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Abstract

Lightning poses a significant hazard to space launch operations to include ground

processing, launch window forecasts, and rocket-triggered lightning events. Two light-

ning initiation forecast methods using weather radar developed in Gremillion and

Orville (1999) and Travis (2015) for Cape Canaveral Air Force Station (CCAFS) and

Kennedy Space Center (KSC), Florida are tested in a new geographical region. This

is accomplished by applying the highest-performing radar parameters from Gremil-

lion and Orville (1999): reflectivity (Z) ≥ 40 dBZ for two consecutive volume scans

at the −10◦C thermal height and Travis (2015): Z ≥ 36.5 dBZ with differential re-

flectivity (ZDR) ≥ 0.31 dB at the −10◦C thermal height, across southwest Utah’s

multi-dimensional lightning detection network, the Telescope Array Lightning Map-

ping Array (TA LMA). Both methods are tested on 102 isolated, warm-season thun-

derstorms between August 2015 and August 2018. A follow-up study Olsen (2018)

was conducted in the Washington, D.C. area using Travis’ parameters, where poor

performance was recorded. Forecast metrics and lead times are calculated and com-

pared to the results of Gremillion and Orville (1999), Travis (2015), and Olsen (2018).

The findings of this study confirm that the lightning prediction methods from both

studies do not function well for Utah. Despite being tested in different climates, the

forecast lead times of all three study locations are statistically significant. Additional

results also conclude that Z is the determining factor within Utah lightning initiation

prediction algorithms and that ZDR lightning prediction is not geographically robust.
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I. Introduction

1.1 Motivation

In the United States, annual lightning costs and losses exceed $5 to $6 billion

(NLSI, 2018). Lightning has tremendous economic impacts on insurance, mining,

petrochemical, and electrical industries. Notwithstanding direct damage, the loss in

time and resources and the disruption of operations at commercial airports, public

areas, and the Department of Defense (DoD) facilities due to lightning is incalculable.

For instance, United States Air Force (USAF) weather guidance, Air Force Manual

(AFMAN) 15-111, requires that a thunderstorm shall be reported at a location for

15 min after the last lightning strike occurred. This 15 min is time lost in aircraft

launch and recovery operations when lightning may no longer be a threat. In addition

to costly and time-related impacts, in years that do not include Hurricane Andrew

(1992), lightning is ranked second in the annual number of deaths among natural

disasters across the country (Cooper, 1995). For example, the United States Bureau

of Labor (U.S. DoL, 2018) reports that an average of 82 people die each year from

lightning strikes, with southern states reporting the highest numbers. Consequently,

much research is dedicated to the improvement of lightning-related weather forecasts.

One such USAF organization particularly interested in improved lightning initiation

forecasts is the 45th Weather Squadron (45 WS), which is responsible for supporting

space launch operations in Florida at Cape Canaveral Air Force Station (CCAFS),

Kennedy Space Center (KSC), and Patrick Air Force Base (AFB). The squadron is

also tasked with safeguarding 25,000 personnel and providing resource protection for

over $20 billion in equipment and facilities within the aerodrome (Roeder, 2018).

CCAFS/KSC is America’s gateway for manned spaceflight, with launch operators

including the National Aeronautics and Space Administration (NASA), DoD, USAF,

1



and various commercial corporations. Lightning causes significant delays in launch

preparation efforts due to its impact on ground operations. Ground delays for the

crews who are readying space vehicles for launch are caused by lightning watches

and warnings issued by the 45 WS, which halts operations until the lightning threat

ends (Roeder, 2018). Continuous interruptions during this critical launch preparation

phase can jeopardize long and short-term launch schedules. In addition, lightning can

be a factor during the launch window due to the threat of natural and rocket-triggered

lightning. Triggered lightning events occur when a rocket passes through a strong pre-

existing electric field (Roeder, 2018). Facility upgrades in recent years to include dual-

polarization (DP) weather radar and multi-dimensional lightning detection equipment

have improved lightning forecasts, but the 45 WS still retains a high false alarm rate.

The possible return of manned space flight, coupled with a projected increase in

the number of future launches, requires that weather forecasts be more accurate than

ever before. New launch initiatives brought on by the 45th Space Wing (45 SW) at

Patrick AFB and CCAFS/KSC strive for an unprecedented 48 per year launch man-

ifest (45 SW, 2017). Improving upon lightning forecasts for the 45 SW is a critical

component in reducing the overreaching impact weather has on launch efforts. Accu-

rate lightning forecasts using DP weather radar offers a potential solution. Meeting

this intent will ensure that the core mission of the Wing is bold, flexible, and creative.

1.2 Research Objective

The application of traditional (non-DP) and DP radar lightning initiation sig-

natures in a climate different to that of the area for which it was developed is a

challenging problem that requires more research. The purpose of this study is to

verify two lightning initiation forecast methods developed by the Air Force Institute

of Technology for the CCAFS/KSC area in Gremillion and Orville (1999) and Travis

2



(2015). This is accomplished by applying the highest performing lightning initiation

radar parameters to the Utah area and comparing the forecast metrics and lead times

from the two methods. The results of the Utah dataset are then compared to a simi-

lar study (Olsen, 2018) which applied Travis’ radar parameters to lightning forecasts

across the Washington, D.C. area. Olsen found that Travis’ method did not perform

well for the new area, resulting in too many false alarms. The negative results of the

Washington, D.C. study suggested research be conducted in a new region to confirm

the results and draw new conclusions about the spatial behavior of radar parameters.

Utah is the ideal test site because of the significant elevation and climate differ-

ences of Florida and Washington, D.C. In addition, Utah also has a multi-dimensional

lightning detection network similar to the system at CCAFS/KSC, which was used in

Travis (2015). The lightning data is provided at no-cost courtesy of the New Mexico

Institute of Mining and Technology (NMT). The weather in Utah also makes it the

perfect location to study lightning, as airmass thunderstorms are the dominant type

of thunderstorms in this area and are one of the main requirements of the two forecast

methods. Lastly, by testing the technique from Gremillion and Orville (1999), which

uses only traditional (i.e. non-DP) radar parameters, this study allows for a measure

of forecast skill using DP variables in radar lightning forecast methods.

1.3 Preview

Chapter I introduces the motivation for this study, the scope of the problem, and

the research objective. Chapter II provides a background of several topics applicable

to the research, to include instrumentation and aspects related to lightning initiation.

Chapter III describes the methodology used to manipulate the lightning and radar

data. Chapter IV details data analysis and research results. Chapter V discusses

conclusions and recommendations for future work.

3



II. Background

2.1 Lightning

This section details the thunderstorm charging and lightning discharge mech-

anisms. Lightning is described as a transient, high-current electric discharge that

results from charge separation within thunderstorms (Uman, 2001). It occurs either

cloud-to-ground (CG), cloud-to-cloud (CC), intra-cloud (IC), or cloud-to-air (CA).

Lightning is produced through cloud electrification and lightning discharge processes.

2.1.1 Cloud Electrification

Cloud electrification is the charging process that occurs within a thunderstorm

before lightning discharge. This electrification occurs as a result from the combination

of several different charging mechanisms: drop break-up, ion charging, convective

charge transport, inductive, and non-inductive processes (Saunders, 2008). Non-

inductive processes are accepted as the dominant electrification mechanisms within

airmass thunderstorms and are the focus of this study. This is due to the relatively

short period of time required by this charging process in order to induce the level of

electrification necessary to produce lightning discharge (Takahashi, 1978).

Non-inductive charging, also known as ice/graupel charging, was first discovered

in laboratory experiments conducted by Reynolds et al. (1957). The research found a

charge transfer occurs when ice crystals collide and coalesce with riming graupel par-

ticles and that the ice removes the equal and opposite charge of the graupel. Figure 1

shows this collision process consisting of graupel, ice crystals, and supercooled water

droplets within a thunderstorm. The results described this as the primary reason why

larger/heavier negatively-charged regions of graupel exist within the lower portion of

thunderstorms and why lighter positively-charged particles are carried aloft into the
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Figure 1. Schematic of a graupel particle showing the interaction with ice crystals and
suspended water droplets within the mixed-phase region of a thunderstorm. Adapted
from Emersic (2006).

upper-regions of thunderstorms. Saunders (2008) further described the accretion pro-

cess of suspended water droplets onto ice crystals as a necessary component in cloud

electrification. This is because the water droplets allow for larger and negatively-

charged cloud-spectra to collide with graupel particles within the mixed-phase region.

Observed thunderstorm charging requirements are detailed within Mason (1953).

The main negative charging center is between the −5◦C and −25◦C thermal levels,

with the main positive center a few kilometers above the negative center. Mason

found that the charging mechanism must generate 5 to 30 C km−3 leading to a charge

generation rate of order 1 C km−3 min−1. Subsequent research indicated that the size

of the individual droplets is also an important component in the charging process.

Avila et al. (1999) found that larger cloud-droplet spectra correlate with the sign of

the electric charge transferred. In general, the larger the cloud-droplets, the more

negative the graupel/hailstones are and the stronger the resultant thunderstorm.
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2.1.2 Lightning Discharge

Lightning strikes occur when enough oppositely-charged graupel and ice particles

are separated throughout the cloud (Reynolds et al., 1957). If enough charges are

separated, the electric field intensifies to the point of dielectric breakdown, which

exceeds the critical value of air electric field suppression (Wallace and Hobbs, 2006).

The required level of electric field intensity for lightning initiation is 3 × 106 V m−1

(Rakov and Uman, 2003). This critical value is only valid for dry air at sea level

pressure, as the presence of hydrometeors and lower air pressure decreases the required

electric field intensity. For example, at an altitude of 6 km with the presence of > 1.4

mm diameter water droplets, the electric field level required for a strike decreases to

1× 106 V m−1 (Rakov and Uman, 2003).

Lightning flashes consist of the initial dielectric breakdown, followed by a stepped

leader and a return stroke. Stepped leaders last for 6−8µs (Krider et al., 1977), while

return strokes occur for several seconds. The resulting flash of lightning persists until

no potential electric difference remains. Similarly, return strokes remain visible as

long as there is a flow of electrons between two opposing charge regions. Lightning

discharges occur either between the charge regions (IC/CC/CA lightning) or between

a charge region and the ground (CG lightning). The cloud electrification and charging

mechanisms preceding a lightning strike can be detected using weather radar.

2.2 Weather Radar

This section describes one of two meteorological tools utilized within this study to

interrogate thunderstorms. It also provides insight into the differences between DP

and non-DP weather radar and the two radar products used within this research.

The first use of radar for meteorological purposes can be traced back to World

War II, when British scientists experimented with 10 cm wavelength radars in order to
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Figure 2. A map of the 159 WSR-88D sites across the United States and at DoD
installations around the world. Adapted from NWS (2018).

detect enemy airplanes during the height of the Battle of Britain (Whiton et al., 1998).

False airplane echoes seen on radar caused by weather phenomena prompted post-

war research efforts in order to investigate what was causing these effects. American

scientists at the Massachusetts Institute of Technology’s (MIT) Radiation Laboratory

were the first to confirm that certain types of radar can be used to detect atmospheric

phenomena. MIT researchers found that hydrometeors attenuate and scatter back

radiation to the radar antenna, which allow for their detection. They proved that

this could be accomplished out to ranges of 240 km at 3 and 10 cm wavelengths.

Since this discovery, radar stations have been installed worldwide in order to

increase meteorological situational awareness and improve public safety. The pri-

mary weather radar in operation across the United States is the Weather Surveillance

Radars-1988 Doppler (WSR-88D). Figure 2 shows the locations of the 159 WSR-88Ds

installed in the United States and at DoD installations across the globe. This system

of weather radars is called the Next-Generation Radar (NEXRAD) network and is a
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joint effort by the Department of Commerce, Defense, and Transportation. The con-

trolling agencies include the National Weather Service (NWS), Air Force Weather,

and Federal Aviation Administration (FAA) (NWS, 2018). The WSR-88D has a max-

imum range of 230 km and operates at 10.5 cm wavelength. It has a peak transmission

power of 700 kW, making it one of the most powerful weather radars in the world.

The NEXRAD network was upgraded in the early 2010s to include DP capabilities.

2.2.1 Dual-Polarization Radar

DP radar is a type of weather radar that functions by emitting two separate

electromagnetic (EM) radiation pulses in both a horizontal and vertical orientation

(NWS, 2017). Traditional weather radar functions by emitting horizontal EM radi-

ation, which allows the radar to detect only the horizontal dimension of a target.

However, with DP radar the returning radiation provides both the horizontal and

vertical cross-sections of targets, thus allowing meteorologists a better estimate of

the shape, size, and variety of targets. Figure 3 shows the outward emittance of

horizontally and vertically-imposed EM radiation on a target by a DP radar, and

the advantages of using this type of radar to detect certain meteorological phenom-

ena. Before 2011, all WSR-88Ds operated as traditional weather radars. Despite the

relatively recent improvements to the NEXRAD network, DP radar technology has

been studied extensively throughout the late 20th century. DP radar was invented

in the 1980s by National Oceanic and Atmospheric Association (NOAA) researchers

in Norman, Oklahoma (NWS, 2017). The high familiarity of the technology among

forecasters allowed for rapid implementation of DP into the NEXRAD network.

Depending on the mode of operation, average WSR-88D power output ranges from

300 W to 1300 W (NWS, 2018). The two primary modes of operation for WSR-88Ds

are clear air mode and precipitation mode. The radar uses clear air mode when no
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Figure 3. A schematic showing how DP radar functions. The DP technology allows
for the detection of the horizontal and vertical extent of targets based on the returned
frequencies of the backscatter. Adapted from NWS (2017).

precipitation is detected and undergoes 10-minute volume scans. These longer scans

enable an increase in radar resolution and heightened sensitivity. Normal echoes in

this mode can include insects, birds, dust, or even temperature and moisture gradients

in the atmosphere. In precipitation mode, the radar completes a volume scan every 4-6

minutes, depending on the volume coverage pattern (VCP) in use. A VCP consists of

multiple 360◦ degree radar scans of the atmosphere, which samples a set of increasing

elevation angles (NWS, 2018). The three clear air mode VCPs are: 31, 32, and 35.

VCP 31 and 32 contain the same elevation angles but vary in their pulse repetition

frequency (PRF). PRF is the length of time between radar pulses. A lower PRF

means that the signal can travel farther, while a higher PRF allows for the velocity

detection of targets (NWS, 2018). The optimal balance between a low and high PRF

and distance or velocity is what is known as the doppler dilemma. This occurs as

a result from the radar being unable to detect a pulse because it transmitted a new

pulse before detecting the original one. This problem means that there is an inverse

relationship between the maximum range of a radar and its velocity (NWS, 2018).

Such velocity aliasing problems are reduced by the use of certain precipitation VCPs.
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Figure 4. A schematic showing the differences in elevation angles for a clear air mode
VCP (top) and a precipitation mode VCP (bottom). Adapted from NWS (2018).

Precipitation mode has four VCPs: 12, 121, 212, and 215. Figure 4 shows two

example VCPs, one for clear air mode (top) and precipitation mode (bottom). Each

precipitation VCP has a specific purpose and varies either by elevation angle, PRF,

or scan time. For instance, in VCP 121, the radar omits higher elevation scans for an

increase in radar samples across the lower levels (NWS, 2018). This is particularly

useful for tropical systems, where the lower elevation scans are ideal in detecting the

movement of spiraling rainbands. All radar data analyzed throughout this study was

retrieved from WSR-88Ds configured in one of these four precipitation mode VCPs.

Weather radar data output from the WSR-88D is categorized either as Level II

or Level III data. Level II data is the digital base that the radial base data and

DP variables output from the signal processor within the radar data acquisition unit

(NWS, 2018). It contains both of the base and DP radar products that will be

discussed in the next section. Comparatively, Level III data is also output data

from the radar product generator, however, it is instead post-processed into useful

weather products used by meteorologists and forecasters to assist in weather analysis,

forecasts, warnings, and weather tracking (NWS, 2018). It contains unique radar

products such as the Hydrometeor Classification Algorithm, Echo Tops, and Melting

Layer. The two primary Level II products used within this study are now discussed.
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2.2.2 Reflectivity

Reflectivity, denoted as Z, is the measure of the reflectance of the horizontally-

imposed EM radiation back to the radar antenna (NWS, 2018). More specifically, the

reflectivity values are estimated from the received power PR. Reflectivity is the most

commonly used radar product in short-term forecasting and lightning studies because

of the linear dependence of reflectivity to precipitation amounts (Travis, 2015). The

returned power PR depends on many factors including the technical characteristics of

the radar, the propagation conditions, the distance to the target, and its reflectivity

Z. The meteorological radar equation, as given by Meischner (2005), is as follows:

PR =
π3PTG

2GRΘ2cτ |K|2Z
210 ln(2)λ2r2L2

atmLMF

(1)

where PT is the peak transmitted power at the antenna, G is the total antenna gain,

GR is the total receiver gain, Θ is the antenna 3 decibel (dB) beam width, |K|2 is

the constant factor, λ is the wavelength of the transmitted EM radiation, Latm is

the one way atmospheric attenuation between the radar antenna and the target, and

LMF is the matched filter losses. This equation is valid under the assumption that the

beam formed by the antenna is circularly symmetric and that the resolution volume

is filled with precipitation. Using the relationship c = λf , the constants from the

power equation (1) can be rearranged into CR and solved for Z to be represented as:

Z = CR · r2 · L2
atm · PR. (2)

Z has standard units of mm6m−3, where radars provide an estimate of the re-

flectivity value Z at range d along the beam. The returned energy can span a large

range of values, which is why Z is usually expressed logarithmically as dBZ (Petty,

2006). Z can be converted from standard units dB to units dBZ using the following
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equation from Petty (2006): Z[dBZ] = 10 log10(Z). An increase in reflectivity by 10

dBZ corresponds to a factor ten increase in Z expressed in standard units and an

increase of 20 dBZ implies a hundred-fold increase in reflectivity. Typical Z values

can vary from −20 dBZ to 70 dBZ, depending on the range of targets being sampled

and the type of weather event. Equation (2) can also be expressed in terms of the

Rayleigh regime and calculated using the following equation given by Petty (2006):

Z =

∫ ∞
0

n(D)D6dD (3)

where n is the number of droplets and D is the diameter of the droplet size being

sampled. Reflectivity is used as a basis in the creation of many DP and Level III

products. The DP radar product used within this research study is next discussed.

2.2.3 Differential Reflectivity

The primary DP radar product used within this study is called differential reflec-

tivity, henceforth referred to as ZDR. It is used to calculate the ratio of backscattered

horizontal and vertical reflectivity in units dB. This is useful in detecting the shape or

the reflectivity-weighted axis ratio of targets within a radar volume scan (Kumjian,

2013). For perfectly spherical targets, where the horizontal and vertical polarizations

are of equal power, the ZDR is equal to 0 dB. For Rayleigh scatterers, where the

particles are smaller compared to the radar wavelength, particles aligned in the hori-

zontal plane produce positive ZDR and those aligned in the vertical direction produce

negative ZDR (Kumjian, 2013). ZDR is also affected by the physical composition and

density of particles, which can enhance the ZDR by an increase in the complex refrac-

tive index. For instance, water droplets have a higher ZDR than an ice pellet of the

same size and shape due to the greater complex refractive index of water (Kumjian,
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2013). This phenomenon can skew interpretation of this radar product if it is not

used correctly. ZDR is calculated using the following equation from Meischner (2005):

ZDR = 10 log
zH
zV

(4)

where zH is the horizontal reflectivity factor, and zV is the vertical reflectivity factor.

If reflectivity is measured logarithmically, equation (4) can be simplified to:

ZDR = ZH − ZV . (5)

ZDR varies greatly for different hydrometeors. Figure 5 displays the typical values

of ZDR across different meteorological and non-meteorological targets. In rain, ZDR

tends to be positive with increasing drop size. This is caused by the aerodynamic

drag induced onto a falling drop. The drag forces cause larger rain drops to become

oblate in shape, while smaller drops remain spherical due to their smaller surface

area. The flatter shape of the drop causes an increase in ZH , which results in a

positive ZDR. Hail and graupel ZDR signatures are more complex than rain drops.

This is due to ZDR changing as a function of hail and graupel size, shape, and liquid

water content (Kumjian, 2013). Increasing positive ZDR values of hail and graupel

particles are indicative of wetter and/or melting conditions. A ZDR of zero can result

from tumbling hail, due to the appearance of a spherical target by the radar antenna.

Negative ZDR values, though rare, are the result from the complicated effects of

resonance scattering on large Mie scatterers, such as hail ≥ 5 cm (Kumjian, 2013).

As with all radar products, ZDR is most useful when it is utilized in combination

with additional traditional and DP radar data. This process provides a system of

checks and balances that is used to confirm or deny the presence of particular weather

phenomena. For instance, in order to verify the existence of hail and graupel within
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Figure 5. A graphic displaying the range of ZDR values attributed to typical meteoro-
logical and nonmeteorological targets. Adapted from NWS (2018).

a towering cumulonimbus, ZDR is often used with Z. An area of increased Z overlaid

onto a region of positive ZDR can indicate the presence of hail and/or graupel and

suggest that the cloud is undergoing electrification processes. This analysis process

can prompt meteorologists of an impending lightning strike and ultimately allow for

the timely issuance of the necessary warnings needed to increase public safety.

2.3 Lightning Detection

This section describes the primary means of detecting lightning strikes for use

within this study. It also details how the chosen lightning detection network operates,

common errors associated with it, its origins, and its advantages over other sensors.

The widespread dangers lightning poses on space launch missions and the public is

mitigated by numerous lightning detection networks installed across the nation. The

primary suite of detection sensors installed in the United States is called the National

Lightning Detection Network (NLDN) and is commercially operated by VaisalaTM.

Since installation in 1989, total lightning flash detection efficiencies have ranged be-

tween 50-60% (Vaisala, 2018b). These lightning detection rates, though acceptable

for general forecasting purposes, are too low for USAF space launch efforts.
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CCAFS/KSC boasts a dense network of lightning detection instruments. In fact,

it is one of the most sophisticated areas in the world in terms of meteorological in-

struments due to the fragile nature of space vehicles (Roeder, 2018). The first system

used by the 45 WS for total lightning detection was called the Four-Dimensional

Lightning Surveillance System (4DLSS). The 4DLSS was a suite of lightning detec-

tion instruments unique to CCAFS/KSC which demonstrated a flash detection rate of

100% (Roeder, 2010). The 4DLSS detected lightning using two pre-existing systems:

the Lightning Detection And Ranging System (LDAR) for IC/CC/CA lightning and

the Cloud-to-Ground Lightning Surveillance System (CGLSS) for CG lightning. A

portable version of the LDAR, that has higher flash detection rates than the NLDN

and used primarily within this study, is called the Lightning Mapping Array (LMA).

2.3.1 Lightning Mapping Array

Invented by researchers in 1998 at NMT, the LMA is a portable, 3-D total lightning

detection network. The LMA consists of 9 to 13 instruments spread around an area

of up to 80 km in diameter (Krehbiel et al., 2001). It operates by detecting sources

of EM radiation produced by lightning step leaders during dielectric breakdown and

measuring their time-of-arrival (TOA) to the individual sensors. The EM radiation

measured are radio frequencies in an unused very high frequency (VHF) band (60-66

MHz) (Thomas et al., 2004). The LMA network is patterned after the LDAR system

developed at CCAFS/KSC by Carl Lennon in the 1990s (New Mexico Tech, 2018).

The use of TOA measurements for lightning detection was pioneered by David

Proctor. In Proctor (1981), the author used ground-based VHF receivers to trace

the paths of outgoing EM radiation following lightning flashes. Proctor found that

lightning channels could be mapped in 3-D space and time based on their arrival at

each of the receivers. In modern TOA-based detection sensors, hyperbolic surfaces are
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Figure 6. (a) 2-D intersection of hyperbolae indicating the return stroke location via
TOA differences; (b) 3-D intersection of hyperbolae pinpointing the step leader location
via TOA differences. Adapted from Roeder (2010).

used to identify the locations of lightning strikes. This is accomplished by detecting

TOA differences of the VHF pulses in sensor pairs. When a pair of sensors detects

a pulse, a hyperbolic volume can be created. The stepped leader is located by the

intersection of four hyperbolae. Figure 6 displays both a 2-D and 3-D representation

of intersecting hyperbolae using the TOA-differencing technique. The best location of

the stepped leader is solved via statistical Chi-Squared minimization (Roeder, 2010).

A minimum of six stations is required to build a solution, in order to solve for

the four unknowns: x, y, z, and t (Thomas et al., 2004). NMT LMAs use the

following equation for TOA calculations in order to determine the position and time

of a radiation source:

ti = t+

√
(x− xi)2 + (y − yi)2 + (z − zi)2

c
(6)

where ti is the time of arrival of the radiation on station i, t is the time of radiation

occurrence by the lightning, x, y, z is the location of the radiation in Cartesian coor-

dinates, xi, yi, zi the location of the radiation on station i in Cartesian coordinates,

and c the speed of light (New Mexico Tech, 2018). Using this calculation method, the

LMA can locate hundreds to thousands of radiation sources per lightning flash. The
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two additional sensors in the LMA network are necessary in order to filter local noise

events. Local noise events are produced by the electrical discharge of power compo-

nents causing ionization effects onto the air. This phenomenon is known as corona

discharge and can occur from a variety of natural and man-made sources. The main

cause of noise events in LMA networks are a result from nearby electric transformers

and power lines (Thomas et al., 2004). Corona discharge can also occur in storm

conditions when elevated objects are exposed to strong electric fields. In addition

to providing a means to filter noise, the two redundant sensors also add statistical

degrees of freedom.

There are numerous advantages in using the LMA for lightning-related research

over traditional lightning detection networks, as summarized by The University of

Oklahoma (2005). First, VHF source densities are updated every 2 min, as opposed

to the 5 min volume scans of radars. This allows for more up-to-date lightning in-

formation to be used operationally in forecasts. Second, because IC/CC lightning

precedes CG lightning by an average of 5 to 10 min, an LMA is able to detect the

first occurrence of lightning. This can cue forecasters to strengthening thunderstorms

and allows for total lightning detection. Third, cloud lightning flash rates are cor-

related with thunderstorm initiation, development, and dissipation. By utilizing the

ability of LMAs to detect lightning flash rates, forecasters can more accurately analyze

thunderstorms and use them to improve forecasts. This is compared to traditional

lightning detectors that only detect CG or IC strikes. Lastly, VHF sources enable

better approximations of storm echo top heights. Echo Top heights is a Level II radar

product that depicts the highest detections of precipitation (defined as a region of

Z ≥ 18.5 dBZ) by the WSR-88D. Echo Tops can be used to assess the strength of

a thunderstorm. Many lightning forecast methods make use of this radar product

because of the correlation of Echo Tops to updraft strength (Yang and King, 2010).
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2.4 Previous Research

This section highlights previous research studies concerning weather radar and

lightning initiation. It focuses primarily on the two lightning prediction methods from

Gremillion and Orville (1999) and Travis (2015). Findings of a similar study (Olsen,

2018) regarding the application of Travis’ DP radar parameters to the Washington,

D.C. area are also discussed.

2.4.1 Reflectivity and Lightning

The relevance of Z parameters to lightning onset has been studied extensively

since the invention of the WSR-88D. Studies have been conducted across different

geographic regions in order to characterize specific lightning initiation signatures on

weather radar. Generally, most radar/lightning studies dictate that an average of 35

dBZ at the −10◦C height is best at predicting lightning onset (Yang and King, 2010).

The primary Z and lightning initiation study utilized in this research study is one

developed for the CCAFS/KSC area in Gremillion and Orville (1999). Henceforth

referred to as the Gremillion Method, this study analyzed 39 airmass thunderstorms

against NLDN and non-DP radar data with the goal of finding the best predictor of

CG lightning. They accomplished this by first defining a Lightning Initiation Signa-

ture (LIST) as the value of maximum Z that is sustained for at least two consecutive

volume scans. Each thunderstorm was analyzed at the −10◦C, −15◦C, and −20◦C

thermal levels at different Z thresholds. For their cases, Gremillion and Orville found

that the highest performing LIST in terms of highest detection rates and minimal

false alarms was 40 dBZ at the −10◦C thermal height. This produced a detection

rate of 84% with a false alarm rate of 7%. These findings were a significant reduction

from the previous CCAFS/KSC rule of thumb for lightning nowcasting of 45 dBZ at

the −10◦C level. Gremillion and Orville noted that this lightning forecast method
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had the potential for use in similar geographical regions across the Southeast United

States, where airmass thunderstorms develop from identical sources.

2.4.2 Dual-Polarization Parameters and Lightning

With the implementation of DP radar into the NEXRAD network in the early

2010s, research studies pertaining to DP radar parameters and lightning onset emerged.

The main DP parameters tested in this study are from Travis (2015), where the author

optimized 249 airmass thunderstorms at CCAFS/KSC with the goal of improving to-

tal lightning forecasts. Using a similar methodology as Gremillion and Orville (1999),

Travis tested each storm at the −5◦C, −10◦C, −15◦C, and −20◦C thermal heights

against the 4DLSS, using a variety of different Z and DP parameters.

Travis used hits, misses, false alarms (FAs), and correct rejections (CRs) to record

how well his method performed. A hit was recorded if the predictor threshold was met

or exceeded prior to a lightning strike and the cell produced lightning. Misses, how-

ever, were noted if lightning occurred but without satisfying the necessary thresholds.

An FA was recorded if the radar parameters were met or exceeded, but lightning did

not occur. A CR was used if the parameters were not met and the cell did not pro-

duce lightning. Travis then used scatter plots to compare both lightning-producing

and non-lightning producing cells against DP variables at each thermal height using

different Z values. Using additional statistical methods, the author optimized each Z

and DP variable combination across all lightning-producing cells. Travis found that

the best performing set of Z and DP parameters to be Z ≥ 36.5 dBZ with ZDR ≥ 0.31

dB at the −10◦C thermal height. This combination of radar parameters maximized

detection rates and lead times, while simultaneously minimizing FAs. Travis recom-

mended testing the prediction method in different areas with similar total lightning

detection networks in order to quantify its use in other area of responsibilities (AOR).
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Figure 7. A map showing the research study locations of Gremillion and Orville
(1999); Travis (2015) (Florida), Olsen (2018) (Washington D.C.), and this research
study (Utah). It is interesting to note that the latitude of Olsen (2018) and this study
is identical at 39◦N. Graphic produced using MATLAB.

Olsen (2018) was the first attempt at testing Travis’ DP parameters in a new

region. Olsen tested the CCAFS/KSC radar parameters in Washington, D.C. Figure 7

shows the research locations of Gremillion and Orville (1999), Travis (2015), Olsen

(2018), and this study. Olsen concluded that Travis’ method did not perform well in

Washington, D.C. Expanding the research efforts of Olsen by testing both the Travis

and Gremillion method in a new environment is the next logical step in order to

continue radar and lightning research, as tests in a new area can infer new knowledge

about DP and non-DP radar data. Utah serves as the ideal test area due to significant

climate, terrain, and elevation differences from CCAFS/KSC and Washington, D.C.

Also, the presence of a pre-existing lightning detection network similar to the one

used in Travis (2015) and Olsen (2018), multiple WSR-88Ds, and the high number

of airmass thunderstorms that form there make Utah the optimal study location.
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III. Methodology

3.1 Sources of Meteorological Data

This section details the sources of lightning, radar, and upper air data utilized

within this study. Specifically, the location of the LMA, WSR-88Ds, rawinsonde

sites, the data retrieval process, and data configuration.

3.1.1 Lightning Data

Archived Utah LMA data was downloaded from the NMT Utah Lightning web

page (New Mexico Tech, 2018). LMA data was generously provided from Dr. William

Rison, Professor of Electrical Engineering at NMT and one of the main inventors of

the LMA. The Utah LMA is also known as the Telescope Array (TA) LMA, due

to its proximity to the National Science Foundation’s Telescope Array Project, and

will henceforth be referred to as such. Figure 8 shows the TA LMA network, spread

around a dry lake bed in southwestern Utah. The archived LMA files were broken

down by folder into 10 min increments, totaling 144 total separate files for one day.

Next, files were downloaded according to the day and time of interest. A time period

of 10 min was downloaded before cell formation, as indicated on radar, to ensure

complete storm coverage. Each data file contained thousands of lines of text denoting

lightning strike information and station health. Detected strikes were organized as:

time in Universal Time Coordinated (UTC) seconds, latitude/longitude, and altitude.

There were a few time periods of missing data, but overall the data gaps had little

impact on the outcome of the research. The most significant data outage occurred

from January 2014 to July 2015, when a hard drive containing the LMA data was

inadvertently deleted (Rison, 2018). This restricted the dataset to only three and a

half years of data, instead of five years which could have potentially added several
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Figure 8. A map showing location of the TA LMA within the state of Utah. The black
stars represent the individual LMA sensors. Graphic created using MATLAB.

more cases to this study. Data collection was limited to only warm-season months,

May through September, from August 2015 to August 2018. This was accomplished in

order to remain consistent with previous research studies and to construct a complete

three-year climatology of Utah thunderstorm occurrence.

3.1.2 Radar Data

The two WSR-88Ds utilized were Cedar City, Utah (KICX) and Salt Lake City,

Utah (KMTX). Figure 9 shows the location of KICX and KMTX relative to the TA
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LMA. KICX is located approximately 145 km southeast of the TA LMA center and is

at 10,754 ft MSL (NWS, 2018). The placement of the radar at such a high elevation

is to ensure that detection is optimized and not obstructed by nearby mountains.

KMTX, however, is located 250 km northeast of the TA LMA center and is positioned

at 6,592 ft MSL (NWS, 2018). Similar to KICX, KMTX is placed high enough to

ensure no interference from the mountainous terrain. KICX was used as the primary

radar in this study, because of its closer distance to the center of the LMA network

than KMTX. However, for cells that formed north of the LMA, KMTX was utilized

to interrogate storms because of its better coverage of that area over KICX. This

convective cell selection process will be discussed in greater detail in Section 3.2.

Archived Level II NEXRAD weather radar data was downloaded from the Na-

tional Centers for Environmental Information (NCEI) web page at NOAA (2018b).

The radar archives were comprised of compressed files that contained data for each

complete radar scan, which varied in size dependent on the VCP in use. File sizes

varied greatly depending the on the severity of the weather. For instance, on active

thunderstorm days where there were numerous convective cells or a passing cold front,

radar files could be as large as 15 megabytes. Quieter and less active days, however,

with little-to-no thunderstorm activity produced file sizes averaging 500 kilobytes.

3.1.3 Miscellaneous Data

In addition to lightning and radar data, archived sounding data was analyzed to

identify the −10◦C thermal height. For the state of Utah, the only rawinsonde data

originates from Salt Lake City which is 200 km away from the center of the TA LMA.

Using this upper air data for the testing area was problematic because it is too far

away to assume an identical atmosphere. This was confirmed by comparing actual

rawinsonde data against model data in the testing area. In order to remedy the lack of
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Figure 9. The locations of the two weather radars, KICX and KMTX, are marked by
the red diamonds. The red star between the two radars represents the center of the
TA LMA. Graphic created using MATLAB.

24



sounding data in southwest Utah, two additional surrounding rawinsonde sites were

considered: Grand Junction, Colorado and Las Vegas, Nevada. Figure 10 depicts the

locations of the three sounding locations in relation to the center of the TA LMA. All

three sounding locations create an isosceles triangle that encompasses the TA LMA.

The centroid of the triangle was calculated and found to be 75 km southeast of the

TA LMA center. Employing a spatial averaging technique of the locations provided a

better estimate of the −10◦C thermal height than using Salt Lake City’s data alone.

The upper air data was downloaded through a support request submitted to the

Air Force’s Combat Climate Center, the 14 WS. All dates between 1 May 2015 and 31

August 2018 were downloaded. The 0 UTC and 12 UTC soundings for all three sites

were averaged to calculate a new total daily −10◦C average. This total daily average

was used as the −10◦C thermal height across the testing area. This calculation was

repeated for each case in the dataset to ensure accurate heights throughout this study.

3.2 Convective Cell Selection

In order to ensure a fair comparison of this study to Olsen (2018), the methodology

applied to this experiment needed to be as similar as possible to Olsen. This helps to

eliminate bias and minimize error which can lead to inaccurate findings and results.

The initial dataset was gathered using the NOAA NCEI Interactive Radar Map

Tool (NOAA, 2018a) to locate isolated thunderstorms. This tool functions by creat-

ing a reflectivity mosaic of the NEXRAD network, thus allowing the user to observe

nationwide thunderstorms using one tool. Range rings were then established around

the TA LMA and both radars. A radius of 100 km was chosen for the TA LMA

because flash detection efficiency exceeds 95% in this range and source detection ef-

ficiency exceeds 70% (Olsen, 2018). This is also the same range used around the

4DLSS in Travis (2015) and the NLDN in Gremillion and Orville (1999). Around
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Figure 10. The black dots indicate the rawinsonde locations: Las Vegas, Grand Junc-
tion, and Salt Lake City. The red star is the center of the TA LMA network. Each
sounding location is approximately of equal distance from the center of the TA LMA.
Graphic created using MATLAB.

the two radars, 160 km radius rings were established. This number was found to be

the optimal detection range based on radar coverage maps in NOAA (2018a). Large

terrain features in Utah caused radar coverage to be sparse and became a significant

factor when narrowing down the dataset. The radar range used in this study dif-

fers from the 85 km radius used in Olsen (2018) and the radar ranges from Travis

(2015) and Gremillion and Orville (1999). This was caused by the radar coverage in

southwest Utah which is less dense than around Washington, D.C and CCAFS/KSC.

Additionally, Washington, D.C and CCAFS/KSC do not have mountainous terrain

like Utah. Thus, it was imperative for the continuation of the research to extend the

radar ranges past previous studies’ ranges to compensate for the poor radar coverage.

Figure 11 shows the range rings established around the TA LMA, both radars, and
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Figure 11. Range rings representing the bounds for the northern and southern testing
areas. The yellow star is the center of the TA LMA and the red stars are both radars.
Only cells that formed within the overlapping LMA/radar rings were considered for
the final dataset. Graphic created using MATLAB.

the northern/southern testing areas. A cell needed to form within either one of the

two overlapping LMA and radar rings in order to be considered for the initial dataset.

After a cell was found that formed in either testing area, its formation and dissipation

time was recorded into a spreadsheet, along with its location in latitude and latitude

coordinates. This process was repeated for each day containing isolated cells in the

northern/southern testing areas, increasing the initial dataset well over 300 cases.

Once all of the radar data was downloaded, it was viewed within Gibson Ridge 2

AnalystTM (GR2Analyst) software. GR2Analyst is an advanced NEXRAD Level II

analysis application, which allows for the interrogation of traditional and DP radar

data at high resolution (Gibson Ridge Software, 2018). GR2Analyst can create cross-
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sections and 3-D volumetric renderings, which allow for the examination of radar

output at altitude. The cross-section tool was the primary instrument used within

this study because it allowed the researcher to quickly analyze the vertical extent of

thunderstorms and observe whether or not they met testing threshold requirements.

The position and swing functions within this tool were used to adjust the slice, ensur-

ing thorough examination of each cell. The GR2Analyst volumetric instrument was

also used in addition to the cross-section tool to construct a 3-D representation of Z.

The isosurface function was employed, which enabled the user to set the 3-D basis at

any Z value. For instance, setting the isosurface basis to the 36.5 dBZ threshold from

Travis (2015), presented the user with a 3-D rendering of the vertical construction of

a cell at this particular Z value. This allowed for a straightforward method of testing

varying Z parameters. Figure 12 shows GR2Analyst output of Z during an airmass

thunderstorm using (a) the volumetric instrument and (b) the cross-section tool.

After all of the radar files were downloaded, they were ingested into GR2Analyst

for viewing. The initial 300 convective cell dataset was narrowed down to the final

dataset by applying strict elimination criteria. Similar to previous lightning-related

studies accomplished by Thurmond (2014), Travis (2015), and Olsen (2018), the

Larsen area method was used to determine if a cell was a suitable candidate. The

Larsen area method was initially developed in order to locate lightning with radar Z

patterns at significant thermal levels (Larsen and Stansbury, 1974). The cells in this

study were analyzed for a Larsen area defined by a horizontal Z threshold of ≥ 30

dBZ at the −10◦C thermal height. This thermal height is significant to thunderstorm

charge structure in terms of indicating the lower bounds of the main charging region

(Olsen, 2018). The cells were then viewed and tested within GR2Analyst to ensure

they met the isolated criteria. This was completed using the isolated convective cell

criteria from Patton (2017), where a cell was considered isolated if it had no storms
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Figure 12. Reflectivity images showing the volumetric instrument (a) with an isosurface
basis set to 36.5 dBZ and the cross-section tool (b) showing the vertical extent of the
same cell. Images produced using GR2Analyst.

with connecting Z values of ≥ 15 dBZ. This isolated criteria reduced the dataset by

75 cases. Radar coverage was next investigated to ensure adequate storm coverage.

The isolated convective cells were then analyzed to determine if the volume scan el-

evation angles of both radars intersected a cell of interest at the−10◦C thermal height.

This was accomplished by creating cross-sections of cells and observing whether or

not the −10◦C height was detected by the radar. GR2Analyst cross-sections display

the altitude in terms of height above the beam. One cannot assume the heights on

a GR2Analyst cross-section as MSL heights, because of the significant terrain and

elevation differences in Utah compared to Washington, D.C. and Florida. To correct

for this, the radar elevation had to be subtracted by the total daily average −10◦C

height and the elevation of each respective testing area had to be added. To illustrate

this, take the following example for a case on 1 May 2018 near the KICX radar, where

the average −10◦C height was 13,253 ft. The elevation of the KICX radar (10,754 ft)

was first subtracted from the −10◦C height, then the average elevation of the south-
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ern testing area was added (4,750 ft). The resultant number of 7,249 ft provided the

altitude of the −10◦C height, as indicated on a GR2Analyst cross-section using KICX

radar. Completing this procedure for KMTX was identical to KICX, except for the

differences in elevations for the northern testing site (5,500 ft) and KMTX (6,592 ft).

Radar coverage issues eliminated approximately 100 cases from the initial dataset.

After verifying that the initial dataset had adequate radar coverage, the raw LMA

data was examined to determine station health. As previously mentioned, a healthy

station consisted of six or more active sensors in the network, as six sensors were used

to build a solution. Cells that had any indications of less than six active stations in the

LMA files were discarded from the initial dataset. This procedure was repeated for

the WSR-88Ds to verify that the radar data was reliable. Using the NOAA (2018b)

web page, days containing the initial dataset were examined to determine whether or

not the radar was fully operational. A visual status display was created for each day

indicating radar status by color. If a radar was in ‘Maintenance Mode’ or ‘Unknown

Mode’, the radar data was considered unreliable and promptly eliminated from the

dataset. Figure 13 shows the status graph of KICX radar on 1 May 2018. This quality

check of both LMA and radar data reduced the initial dataset by 25 cases.

After all elimination requirements were applied, the initial dataset was reduced

to a final dataset of 102 cases. The final dataset contained the cells used in the

testing of both Travis’ and Gremillion’s lightning prediction methods. All of the

information pertaining to cell formation and dissipation time, location, and −10◦C

heights were recorded into a spreadsheet. Figure 14 displays Utah thunderstorm

climatology against the hourly and monthly breakdown of cells in the final dataset.

The thunderstorm climatology histogram was produced using state-wide Operational

Climatic Data Summary (OCDS) data obtained from the 14 WS. Similar to Travis

(2015) and Olsen (2018), most thunderstorms within the final dataset formed in the
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Figure 13. An example radar status graph indicating KICX station health for 1 May
2018. If the radar was in Maintenance Mode or Unknown Mode, the case was removed
from the initial dataset over data quality concerns. Adapted from NOAA (2018a).

Figure 14. Histograms displaying Utah thunderstorm climatology by frequency and
the hourly and monthly distribution of thunderstorm cases in the final dataset. A peak
in thunderstorm formation is observed in the latter half of the day, while May and July
see the highest number of cases. Climatology data courtesy of the 14 WS. Histograms
created using MATLAB.
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latter half of the day. However, the spread of cases was different from both studies.

Travis and Olsen both saw a Gaussian distribution with a peak in July and a minimum

in May/September. Utah’s case load had a more even spread throughout the year,

with May/September having the highest number and June/August the lowest.

3.3 Lightning Initiation Criteria Testing

After the final dataset was firmly established, the lightning prediction methods

from Travis (2015) and Gremillion and Orville (1999) were tested. In order to apply

these thresholds, the LMA files first needed to be examined to determine whether

or not lightning occurred in the area of cell formation. This was accomplished using

Matlab code, with the use of ‘for loops’ to determine when and where a lightning

strike occurred. Using the previously recorded latitude and longitude coordinates of

the cells, the locations were ingested into Matlab and ran against the LMA files in

nested loops. If lightning occurred, the Matlab code stopped and displayed a time of

lightning initiation in UTC seconds. Another string of code was then used to convert

the UTC seconds to a more readable ‘HH:mm:ss’ format. This was the time recorded

into the spreadsheet. If no lightning occurred, Matlab revealed that ‘Lightning Does

Not Exist’ (DNE) and was recorded as such. Each case was manually verified against

a visual display of the TA LMA showing lightning locations and GR2Analyst to ensure

that the lightning was associated with the specified case rather than another passing

storm. This was also the method used to eliminate noisy/erroneous LMA sources.

Once the Matlab code was ran for each case and the times were recorded in the

spreadsheet, GR2Analyst was utilized to apply both Travis’ and Gremillion’s highest-

performing radar thresholds. For Travis, the time Z ≥ 36.5 dBZ at the −10◦C height

was met was recorded for each case, followed by the time of ZDR ≥ 0.31 dB. Similar

to the system used in Travis (2015), if both thresholds were met prior to the lightning
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occurrence time from Matlab, the case was labeled as a hit. If one or both radar

parameters were never met and lightning still occurred, it was recorded as a miss.

An FA was recorded when no lightning occurred, but both parameters indicated

otherwise. CRs were also noted when no lightning occurred and both thresholds

concurred. Table 1 displays the possible forecast outcomes, based on forecast and

observed criteria. If lightning occurred, the only possible outcomes were hit or miss;

conversely, non-lightning cases yielded either an FA or CR. A hit indicated that the

forecast method was performing well. A CR equally signaled that the selected forecast

method was functioning adequately. On the contrary, misses and FAs implied that

the predictor method was performing poorly. If a hit was recorded, the lead time was

calculated by subtracting the difference between the time of lightning initiation (as

displayed by Matlab) and the time when both Z and ZDR thresholds were met.

After Travis’ thresholds were tested, Gremillion and Orville’s parameters were ap-

plied to the Utah final dataset. This was accomplished using their highest preforming

LIST, Z ≥ 40 dBZ for two consecutive volume scans, at the −10◦C thermal height

(Gremillion and Orville, 1999). Similar to Travis (2015), a hit was recorded if the Z

threshold preceded lightning initiation and a miss if it occurred after. A CR was used

when no lightning occurred and the thresholds were never met, and an FA recorded if

the thresholds indicated lightning but none actually occurred. Forecast metrics were

next calculated for both prediction methods to compare and contrast performance.

Event Event Observed
Forecast Yes No
Yes Hit False Alarm (FA)
No Miss Correct Rejection (CR)

Table 1. The list of possible forecast outcomes, given the occurrence or non-occurrence
of a weather event. Adapted from Joliffe and Stephenson (2003); Travis (2015).
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3.4 Forecast Metrics

The forecast outcomes and lead times computed from before were next inputted

into forecast metrics. Forecast metrics are verification statistics used to evaluate the

skill of a forecast. In this study, forecast metrics were used to score both lightning

prediction methods. The Probability of Detection (POD) was the first metric calcu-

lated. Also known as the hit rate, it provides the proportion of lightning occurrences

that were correctly forecasted (Joliffe and Stephenson, 2003), and is given as:

POD =
Hit

Hit + Miss
. (7)

A POD of 1.0 is desired as it indicates a forecasting method is limiting the number

of misses. However, because it does not take FAs into account, POD is not reliable

in measuring the overall forecast skill. Only two of the forecast metrics rely on the

number of FAs, they are the False Alarm Ratio (FAR) and Probability of False Alarm

(PFA). FAR provides the probability of FA when an occurrence is forecast (Joliffe

and Stephenson, 2003) and is defined as:

FAR =
FA

FA + Hit
. (8)

A FAR of 0.0 is considered optimal because it limits the number of FAs in the forecast.

However, like POD, FAR is not the ideal forecast metric when used alone because it

is dependent on the number of hits (Joliffe and Stephenson, 2003). This ushers the

need for PFA, which compares the number of FAs to CRs. It is given by:

PFA =
FA

FA + CR
. (9)
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A PFA of 0.0 is desired, but similar to FAR, this forecast metric is somewhat limited.

This is because PFA is dependent on the number of FAs and CRs, which can limit

forecast reliability (Travis, 2015). The Critical Success Index (CSI) is a verification

statistic that provides the probability of a hit occurring no matter the forecast out-

come. It assumes that the times when an event was neither expected nor observed

are of no consequence (NWS, 2018). It is given as:

CSI =
Hit

Hit + FA + Miss
. (10)

A CSI of 1.0 is considered a perfect score and scores near 0.0 indicate no skill (Jo-

liffe and Stephenson, 2003). Although sometimes difficult to interpret, CSI provides

additional insight into the overall performance of each lightning predictor method by

rating a method’s success at forecasting a rare critical event (Roeder, 2018). It was

initially developed by the NWS in order to score the skill of tornado forecasts.

True Skill Statistic (TSS) is used to determine how well a method preforms at

predicting the occurrence or non-occurrence of an event. It takes into account all of

the outcomes from Table 1 and ranges from −1.0 to +1.0. A TSS of +1.0 is considered

perfect for predicting the occurrence of an event. A TSS of −1.0 indicates the case

was a perfect predictor for determining the non-occurrence of an event (Joliffe and

Stephenson, 2003). A TSS score of 0.0 indicates no forecast skill. It is defined as:

TSS =
(Hit ∗ CR)− (FA ∗Miss)

(Hit + Miss)(FA + CR)
. (11)

The last forecast metric used in this study is the Operational Utility Index (OUI).

Developed by the 45 WS for their operations, it is optimized to test the operational

utility of different lightning prediction algorithms (Travis, 2015). OUI is a non-

standard performance metric that takes combines POD, TSS, PFA, and average lead
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time into a weighting scheme that reflects the operational priorities of the 45 WS.

An OUI score of 1.0 denotes optimal performance, while a score of 0.0 indicates no

skill. The POD is given a weight of three because of the high emphasis placed on

personnel safety. TSS is weighted at two, because it is accepted as a reliable measure

of skill. Lead time is also weighted at a two in the overall calculation. PFA is weighted

the least, because some FAs are accepted by the 45 WS in order to maintain a high

POD. Similar to the metric used by Travis (2015), the average lead time for OUI is

measured against the 45 WS standard desired lead time of 30 min and is defined as:

OUI =
(3 ∗ POD) + (2 ∗ TSS) + (2 ∗ LeadTime

30
) + (1 ∗ (1− PFA))

8
. (12)

As an additional measure of forecast skill in this study, two modified versions of OUI

were utilized in order to better normalize the lead time term. The first is defined as

OUI* and is identical to the forecast metric introduced in Olsen (2018). OUI* differs

from OUI in that the 30 min lead time term is replaced in the denominator with the

maximum lead time found in the analysis. OUI* is scored the same as OUI, where a

score of 1.0 is perfect and a score of 0.0 is worthless. OUI* is given by:

OUI* =
(3 ∗ POD) + (2 ∗ TSS) + (2 ∗ LeadTime

MaxLeadTime
) + (1 ∗ (1− PFA))

8
. (13)

A recent report (Nava, 2018) studied the differences between the OUI from Travis

(2015) and the OUI* from Olsen (2018). In Nava (2018), the author recalculated

Travis’ forecast metrics using his original hit, miss, FA, and CR count. Inputting the

maximum lead time from Travis (2015) into the new OUI* calculation, Nava found

that the mean/median value decreased by 0.04. The smaller mean/median value was

a result from using the maximum lead time in the lead time term in the denominator.

In order to determine if the 0.04 difference was significant, a statistical resampling
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technique was utilized that suggested the two OUIs were similar. Nava concluded that

the impact of the OUI equation differences between the two studies was negligible.

The third and final modified OUI is OUI†. OUI† is made to further normalize the

lead time term. This forecast metric is unique to this study. Normalizing is accom-

plished by limiting the ‘MaxLeadTime’ term to 30 min (Roeder, 2018). Comparing

OUI† against the previous two OUIs will indicate its usability for 45 WS operations.

OUI† is scored the same as the previous two OUIs and is defined as:

OUI† =
(3 ∗ POD) + (2 ∗ TSS) + (2 ∗ LeadTime

MaxLeadTime[30]
) + (1 ∗ (1− PFA))

8
. (14)

3.4 Bootstrap Resampling Method

Bootstrapping is a statistical resampling technique used to estimate statistics on

a population by sampling a dataset with replacement. In essence, it helps the user to

better understand the sampling distribution of a particular statistic from a collection

of its own values arising from repeated samples (Singh and Xie, 2008). Bootstrapping

was invented by statistician Bradley Efron in 1979 and has since allowed for a cheaper

and more timely calculation of resampling statistics. The Bootstrap Resampling

Method is based on the probability theory of the law of large numbers. This law

states that with enough data, the empirical distribution of a sample will be a good

approximation of the true distribution. As such, the higher number of resamples, the

more accurate the results. Therefore, 100,000 resamples was chosen for use within

this study because it is correlated with high accuracy and is the same number of

resamples used in Olsen (2018). Because of the large number of resamples, computer

software is used to conduct bootstrap. For this study, Matlab software was utilized.

A major application of the statistical resampling technique is in the determination

of confidence intervals (CI). This helps in answering questions regarding the CI of a
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mean, median, or interquartile. Bootstrapping is better understood when applied

to an example. Consider the following from Henderson (2005): the true value of a

population is θ, where a set of n values are randomly sampled. The sample estimate

θ̂ is based on the n values (x1, x2, ..., xn). Sampling with replacement, the n values

now become the bootstrap sample (x∗1, x
∗
2, ..., x

∗
n). The bootstrap sample estimate θ∗

is based upon the number of times the bootstrap sample is resampled. The higher

the number of resamples, the higher the accuracy in the estimate. The exact number

of resamples required to produce an accurate bootstrap resample is unknown, but is

dependent on the sample size. Numerous studies have been accomplished in order to

establish this ideal number of resamples. As a rule of thumb, larger datasets (n ≥ 50)

generally require a thousand or more bootstraps (Henderson, 2005). Ultimately, the

more resamples, the more accurate the resulting data. The fundamental idea of

bootstrap is similar to the Monte Carlo approximation, that states the sampling

distribution θ∗ − θ̂ behaves like the sampling distribution θ̂ − θ (Henderson, 2005).

For this study, each case from the final dataset was assigned a number from 1 to

102. The case numbers were then randomly sampled 102 times to create the bootstrap

sample. Next, a total of 100,000 bootstrap samples were created by repeating this

process. A statistical analysis was then run on each sample to generate the 95% CIs

for each forecast metric, providing the mean, median, and interquartile ranges. The

resultant error bounds give a good approximation of the true data distribution.
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IV. Analysis and Results

This chapter presents the results obtained from applying the lightning prediction

methods from Gremillion and Orville (1999) and Travis (2015) onto the Utah dataset.

Gremillion’s method includes the use of only traditional/non-DP parameters,

while Travis’ method contains both traditional and DP variables. Gremillion’s high-

est performing method for CCAFS/KSC is Z ≥ 40 dBZ, for two consecutive volume

scans, at the −10◦C thermal height. Travis, however, found that Z ≥ 36.5 dBZ with

ZDR at the −10◦C thermal height was more superior in terms of lead times and light-

ning detection. After applying both methods and calculating forecast metrics and

lead times, the results of Travis’ method applied to the Utah dataset is compared to

the findings in Olsen (2018). Olsen applied Travis’ method to the Washington, D.C.

area, where it was concluded that lightning prediction methods could not be applied

universally. Olsen suggested expanding the research into new geographical regions.

The following analysis describes in detail a sample case from the dataset and

a comparison of the Utah results to Gremillion and Orville (1999), Travis (2015),

and Olsen (2018). An optimization for Z and ZDR is also conducted to unveil the

optimal threshold for each radar parameter that maximizes hits and minimizes FAs.

Additional findings are also presented that were discovered during the course of the

research. These newfound results may lead to additional research opportunities that

could ultimately bolster lightning prediction methods and improve personnel safety.

4.1 Sample Case

To understand the results of this study better, an example case from the final

dataset is presented. Figure 15 shows the GR2Analyst base reflectivity and the

circled cell of interest. The cell formed 95 km north of KICX at 1730 UTC on 11
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August 2015 and dissipated at 1815 UTC. The cell reached a maximum Z of 50 dBZ.

After confirming it fell within the bounds of the southern testing area, the −10◦C

thermal height was calculated. The −10◦C height was found to be 10,562 ft after

applying the elevation correction. Once the thermal level of interest was established,

radar interrogation efforts began using the cross-section and volumetric tools.

The cross-section tool was first utilized to examine the cell and determine whether

or not it contained the Z and ZDR values from Travis (2015). The position and swing

functions were also used to adjust the radar cross-section and examine the entire cell.

Figure 16 shows the (a) GR2Analyst volumetric Z display set to 36.5 dBZ and (b)

the Z cross-section. The −10◦C thermal height was then overlaid onto both images

Figure 15. A radar image from GR2Analyst showing the base reflectivity on 11 August
2015, from KICX radar. The red circle indicates the cell of interest, the red star
denotes the center of the TA LMA, and the yellow star is KICX radar. Image produced
in GR2Analyst.
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Figure 16. (a) Volumetric representation of Z with isosurface set to 36.5 dBZ; (b)
cross-section of the same cell indicating the vertical extent of Z on 11 August 2015.
The red lines in both images represent the −10◦C thermal height. Images produced
using GR2Analyst.

Figure 17. ZDR radar cross-section showing the vertical distribution of ZDR on 11
August 2015. The red line denotes the −10◦C thermal height. Image produced in
GR2Analyst.
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to determine if the required thresholds were met here. The time when the 36.5 dBZ

threshold was met at the red line in Figure 16 was recorded into the spreadsheet. For

this case, Travis’ Z threshold was met at 17:40:30 UTC. ZDR was next examined using

the same process. Figure 17 shows the ZDR cross-section of the cell of interest. The

≥ 0.31 dB ZDR threshold was met at the −10◦C thermal height at 17:30:56 UTC and

recorded as such into the spreadsheet. After both radar threshold times were recorded

into the spreadsheet, Gremillion’s lightning prediction method was next tested.

Gremillion’s method was tested identically to Travis’ method, except for the step

of analyzing ZDR. Using the same cell, GR2Analyst was employed to create a Z

cross-section. Since the analysis was just complete using Travis’ method, the step

of creating a volumetric display was omitted, because the range of Z values was

already known. Applying the same −10◦C thermal height to the cross-section, the

first instance of ≥ 40 dBZ was noted. Using the ‘Next Volume Scan’ button in

GR2Analyst, the Z cross-section was then cycled to the next volume scan. Figure 18

illustrates the two consecutive Z cross-section volume scans in which Gremillion’s

lightning thresholds were met. The second instance of ≥ 40 dBZ at the −10◦C height

was recorded into the spreadsheet into a separate column from Travis’ information.

Southwest Utah Forecast Outcomes
Lightning DNE Lightning Occurrences Total Cases

66 36 102

Travis Method
Hit Miss CR FA
23 13 10 56

Gremillion Method
Hit Miss CR FA

9 27 32 34

Table 2. Summary of the forecast outcomes utilizing both Travis’ and Gremillion’s
highest preforming lightning prediction methods and the total number of cases con-
taining lightning-producing cells.
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Figure 18. Z radar cross-section employing the highest-preforming lightning prediction
method from Gremillion and Orville (1999) across two consecutive volume scans. The
first image (a) indicates the first instance where the ≥ 40 dBZ threshold was met. The
second consecutive volume scan (b) shows identical Z values at the thermal height of
interest. The red line denotes the −10◦C height. Images produced in GR2Analyst.

Once the times of both radar thresholds were recorded, Matlab was used to

establish the time of the first lightning discharge from the cell. Utilizing the LMA

file containing the entire 45 min lifespan of the cell, Matlab code was ran and

programmed to stop at the time of the first lightning strike. This was accomplished

by inserting latitude and longitude coordinates containing each cell. Each coordinate

was recorded into the spreadsheet as either ‘south latitude’, ‘north latitude’, ‘west

longitude’, or ‘east longitude’. These coordinates were then ingested into Matlab

‘for loops’ and ran against the LMA files using the methodology described in Section

3.3. The time of lightning occurrence was recorded as the time of lightning initiation

in the spreadsheet. For Travis’ method, this case was labeled a hit, because both

radar parameters were met 22 min prior to the first lightning strike. Gremillion’s

method also produced a hit, but with only 17 min of lead time. Table 2 summarizes

the forecast outcomes for Utah using both lightning prediction methods and the total

number of lightning producing and non-lightning producing cases in the dataset.
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4.2 Travis (2015) Comparison

This section describes the results of applying Travis’ method to southwest Utah.

It also compares the Utah results against Travis’ results for CCAFS/KSC. This is

accomplished by comparing and contrasting the forecast metrics and lead times from

the two studies, and describing differences and similarities.

The forecast metrics of this study, as compared to the CCAFS/KSC area from

Travis (2015), are the primary means of determining the forecast skill of Utah DP

lightning prediction methods. Table 3 lists the computed forecast metrics for south-

west Utah and CCAFS/KSC. The numbers in bold red indicate the least-performing

forecast metric among the two locations. The first forecast metric, POD, resulted in

undesirable results for the southwest Utah area. Used to calculate the probability

of lightning detection, a POD of 1.0 is considered optimal. The POD for southwest

Utah did not achieve favorable results, with a score of 0.6389. This means that 63.89%

of the time, Travis’ method was accurately predicting lightning onset in southwest

Utah. This was less than Travis’ POD of 0.8889, which shows that his method has

a higher hit rate in the CCAFS/KSC area. The next metric, FAR, detects the skill

of the forecast based on FAs. Utah’s result was on the order of 12 times higher than

CCAFS/KSC, suggesting FAs are the dominant forecast outcome. At 0.7089, this

was a significant difference to the 0.0588 FAR calculated for CCAFS/KSC. PFA is

an additional metric used to quantify FAs. For southwest Utah, PFA was 0.8485,

which was again much higher than Travis’ PFA of 0.0769. This result was somewhat

expected, given both the high number of FAs from Table 2 and the high FAR from

before. Next, TSS was calculated. This forecast metric accounts for all possible fore-

cast outcomes in the calculation and is a good indicator of overall forecast skill. A

TSS of 0.2096 resulted for southwest Utah, which was approximately four times less

than Travis’ TSS of 0.8120. A TSS of 1.0 indicates perfect skill, whereas a score of 0.0
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Southwest Utah and CCAFS/KSC Forecast Metrics

Southwest Utah CCAFS/KSC
POD 0.6389 0.8889
FAR 0.7089 0.0588
PFA 0.8485 0.0769
TSS -0.2096 0.8120
CSI 0.2500 0.8421

Mean OUI 0.2891 0.7504
Median OUI 0.2561 0.7067
Mean OUI* 0.2734 0.7111

Median OUI* 0.2467 0.6848
Mean OUI† 0.2891 0.7504
Median OUI† 0.2561 0.7067

Table 3. Overview of the forecast metrics computed using Travis’ lightning prediction
method in southwest Utah and CCAFS/KSC. The red-colored numbers indicate the
worst performing forecast metric as compared to the other location.

indicates no forecast skill. The −0.2096 TSS for Utah suggests that Travis’ method

was better at forecasting non-lightning events rather than actual lightning producing

cells. The last standard forecast metric, CSI, was calculated in order to provide ad-

ditional insight into the lightning prediction forecast method. A CSI of 0.2500 was

computed for southwest Utah and a CSI score of 0.8120 for the CCAFS/KSC area.

Similar to previous metrics, this Utah metric was much worse than Travis’ scores.

At exactly one-quarter of the optimal score, Utah’s CSI indicates poor overall per-

formance of predicting critical events. Utilizing the bootstrapping method, 100,000

resamples were created in Matlab from the original 102 cases in the final dataset.

The resultant 95% CIs were plotted with each forecast metric. Figure 19 shows the

five forecast metrics with 95% CI for both the southwest Utah and CCAFS/KSC

areas. Almost all of the Utah forecast metrics were statistically different from Travis’

metrics, except for POD. This was made evident by the slight overlap in the 95%

CI bounds. Interestingly, this result was identical to Olsen (2018), where the author

found that the POD for Washington, D.C. and CCAFS/KSC were also similar.
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Figure 19. All five forecast metrics resampled 100,000 times using bootstrapping with
95% CI for the southwest Utah and CCAFS/KSC area. Each forecast metric indicated
that they were statistically different between the two locations, except for POD which
had slight overlap in the 95% CI bounds. Image produced in MATLAB.

The next three forecast statistics calculated are the nonstandard metrics men-

tioned in Chapter III: OUI, OUI*, and OUI†. Primarily used to test the operational

utility of lightning initiation prediction algorithms for the 45 WS, each forecast met-

ric differs in a variation of the lead time term. As such, differences among the three

metrics are small. In fact, it was recently proven that there is no significant differ-

ence in OUI and OUI*. In Nava (2018), recomputing Travis’ original OUI to the

OUI* metric showed similar results between the two metrics. The lead time term is

weighted at two and is one of three other forecast metrics used in the overall calcu-

lation. Figure 20 shows the three versions of OUI and their corresponding 95% CIs.

For this study, the original mean OUI from Travis (2015) applied to the Utah dataset

resulted in a score of 0.2891, which was much less than the CCAFS/KSC value of
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Figure 20. The three modified versions of OUI for both the southwest Utah and CCAF-
S/KSC area. OUI† had the highest scores for both southwest Utah and CCAFS/KSC.
Image produced in MATLAB.

0.7504. The first modified version, OUI* from Olsen (2018), produced a worse score

for Utah and CCAFS/KSC, at 0.2734 and 0.7111, respectively. Both reductions were

expected with the use of the maximum lead time, which increases the size of both

denominators. The final modified OUI was OUI†. For Utah, the score improved to

0.2891, which was the same as OUI. CCAFS/KSC also remained the same as the

original OUI at 0.7504. This was due to the cap placed upon the maximum lead time

term in the OUI† calculation. Further comparisons with Olsen (2018) and Gremillion

and Orville (1999) are needed to prove which OUI produces the highest scores.

After all Utah forecast metrics were calculated and compared with CCAFS/KSC,

the lead time calculations from Travis (2015) were next analyzed. Table 4 shows

the mean, median, and maximum lead times for Travis’ method applied to the two

testing sites. The mean lead times between the two locations favor CCAFS/KSC
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Southwest Utah and CCAFS/KSC Lead Times

Southwest Utah CCAFS/KSC
Mean Lead Time (mins) 9.9565 11.8372

Median Lead Time (mins) 6.0000 6.6000
Maximum Lead Time (mins) 37.0000 49.8167

Table 4. The mean, median, and maximum lead times using Travis’ lightning prediction
method for southwest Utah and CCAFS/KSC. The red text indicates the less-than-
favorable metric as compared to the other location.

Figure 21. The mean and median lead times for southwest Utah and CCAFS/KSC.
Both locations have statistically similar results, but CCAFS/KSC has a higher mean
CI. Images produced in MATLAB.
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by approximately 2 min. Both median lead times, however, were much more similar

with less than a tenth of a difference between the two regions. Maximum lead time

was also different, with Travis’ study indicating 50 min and less for Utah at 37 min.

Figure 21 shows the mean and median lead time differences, with 95% CIs. The 95%

CIs were computed using the same bootstrap resampling technique as before. The

overlapping CI bounds indicated that despite different mean, median, and maximum

lead times, the lead times are generally alike. This was unexpected, due to the vast

differences between the two areas. However, this result may suggest that lightning

forecast lead times are similar across all regions, regardless of method or climate.

4.3 Olsen (2018) Comparison

The second comparison conducted in this study compares the results of the Travis

method in Utah against the findings in Olsen (2018). Olsen focused on applying

Travis’ lightning initiation thresholds to the Washington, D.C. area. By comparing

Olsen’s D.C. findings to the Travis Utah results, it can provide insight into DP light-

ning forecast method performance in different regions. Similar to before, this section

details the eight forecast metrics with 95% CIs and the lead time calculations.

All eight forecast metrics for Utah were inferior to the Washington, D.C. study.

Table 5 provides an overview of all eight metrics, for both the southwest Utah and

Washington, D.C. locations. The Utah POD was 0.6389, which was slightly lower

than the POD from Olsen (2018) at 0.7222. Though Utah’s POD was lower, it

is worth noting that both locations were more similar to one another than Utah

and CCAFS/KSC in the Travis comparison. The FAR for Utah was also higher

than the other study, at 0.7089 compared to Olsen’s 0.5000. PFA and TSS were

among the worst performing forecast metrics. Both figures were much worse than the

Washington, D.C. study, likely because of the vast terrain and elevation differences
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between the two regions. CSI performance statistics were also more similar than in

the Travis comparison, where there was a difference of nearly four times the Utah

value. Both CSI scores were low, indicating that Travis’ method has poor skill in

predicting the occurrence/non-occurrence of lightning in Utah and Washington, D.C.

Figure 22 shows the 95% CI for the five forecast metrics. Almost all of the forecast

metrics for southwest Utah had comparable results to Washington, D.C., as indicated

by the overlapping CIs. PFA and TSS were the only two metrics that were statistically

different. An interesting result was that Olsen (2018) had similar findings when

Washington D.C. was compared to CCAFS/KSC. Olsen found POD and PFA to

be statistically similar, while FAR, TSS, and CSI different. It was not surprising

for Utah’s TSS to be the worst performing TSS among the three locations. This

was made evident by it being the only negative scoring TSS, suggesting little-to-no

forecast skill. This likely resulted from the significant elevation and climate differences

among Utah, CCAFS/KSC, and Washington, D.C. Both of these east coast sites are

located at sea level. This is in stark contrast to Utah, where the elevation ranges

Southwest Utah and Washington, D.C. Forecast Metrics

Southwest Utah Washington, D.C.
POD 0.6389 0.7222
FAR 0.7089 0.5000
PFA 0.8485 0.4063
TSS -0.2096 0.3160
CSI 0.2500 0.4194

Mean OUI 0.2891 0.5311
Median OUI 0.2561 0.4990
Mean OUI* 0.2734 0.5108

Median OUI* 0.2467 0.4849
Mean OUI† 0.2891 0.5108
Median OUI† 0.2561 0.4849

Table 5. Overview of the forecast metrics computed using Travis’ lightning prediction
method in southwest Utah and Washington, D.C. The red-colored numbers indicate
the worse-preforming forecast metric among the two locations.
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Figure 22. All five forecast metrics with 95% CI for the southwest Utah and Washing-
ton, D.C. area. The metrics indicate that POD, FAR, and CSI are statistically similar,
while PFA and TSS are different. Image produced in MATLAB.

from 2,300 ft to over 13,500 ft. In addition, the climatic differences between these

three locations are significant. CCAFS/KSC and Washington, D.C. both lay along

the Atlantic Ocean, which allow for a mild, humid maritime climate. The primary

weather drivers here are determined by synoptic-scale circulations and local sea/land-

breeze interactions. Utah, on the other hand, is largely comprised of vast mountain

ranges and continental dry desert. Weather in the summer is primarily determined by

the onset and location of heat lows, which form as a result from the North American

Monsoon. This seasonal feature peaks in strength during the late summer months and

brings widespread thunderstorms and precipitation to the southwest United States.

The three OUIs were then compared to Olsen (2018) and Utah. Figure 23 shows

the three OUIs, with 95% CI, for the southwest Utah and Washington, D.C. regions.
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Figure 23. The three modified versions of OUI for both the southwest Utah and
Washington, D.C. area. While OUI* was the highest for Utah, OUI† held the highest
mean for both locations. Image produced in MATLAB.

As expected, Washington, D.C. had higher-preforming OUIs compared to Utah. Sim-

ilar to the previous CCAFS/KSC OUI comparison, where they were each drastically

different from one another, these forecast metrics were more alike. This was an in-

teresting result because it indicated that Washington, D.C. and Utah produce more

similar results than originally anticipated. The reason for this may stem from sim-

ilarities in the aerosol load. Washington, D.C. is a highly-populated metropolitan

area, which allows for high anthropogenic aerosol counts. Though Utah is not highly

populated, it has high aerosol counts due to lofted dust. A high dust load can act

as additional CCN and possibly induce thunderstorm formation in the right atmo-

spheric conditions. This could also be true for highly-populated areas (i.e New York

City, Atlanta, or Charlotte) due to the increased concentration of anthropogenic

aerosols. In addition to aerosols, it is worth noting that both Washington, D.C. and
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southwest Utah are approximately at the same latitude. It is unknown what exactly

could be causing the heightened similarities in the data between the two testing sites,

especially considering the vast terrain/climate differences and the large distance sep-

arating them. However, it is possible that multiple regions, regardless of climate or

terrain, along the same latitude have similar lightning initiation criteria. The simi-

larities could result from similar mid-latitude weather and climate regimes between

Utah and Washington, D.C. While this theory appears to verify well for Utah and

Washington, D.C., more research will be required to confirm or deny this theory.

The final comparison of Olsen (2018) to this study included an examination of

lead times. Table 6 summarizes the mean, median, and maximum lead times for both

locations using Travis’ lightning prediction method. Similar to before, Utah’s mean

and median lead times were inferior to Washington, D.C. However, it is interesting

to note that Utah and CCAFS/KSC had more similar mean and median lead times

than Utah and Washington, D.C. This was made evident by the more similar mean

and median lead times between Utah and CCAFS/KSC in Table 4. This suggests

that Utah and CCAFS/KSC are composed of more similar duration airmass-type

thunderstorms. The maximum lead times for Utah and Washington, D.C. were co-

incidentally the same at 37 min. The 95% CI intervals for both studies were also

calculated. Figure 24 shows the median and mean lead times with their respective

95% CIs. Similar to the CCAFS/KSC comparison, significant overlap among the CIs

indicate that the lead times were generally alike. It is also worth noting that the 95%

CI bounds of Washington, D.C. are much wider than Utah, suggesting a more diverse

range of lead times. This was different from the Travis comparison, where Utah and

CCAFS/KSC were more statistically similar. This result confirms that Utah and

CCAFS/KSC have more similar airmass-type thunderstorms than Washington, D.C.
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Southwest Utah and Washington, D.C. Lead Times

Southwest Utah Washington, D.C.
Mean Lead Time (mins) 9.9565 12.8462

Median Lead Time (mins) 6.0000 9.0000
Maximum Lead Time (mins) 37.0000 37.0000

Table 6. The mean, median, and maximum lead times using Travis’ method for south-
west Utah and Washington, D.C. The red-colored text indicates the least amount of
lead time among the two locations.

Figure 24. The mean, median, and maximum lead times for southwest Utah and Wash-
ington, D.C. Both locations had similar lead times, as made evident by the overlapping
CIs. Images produced in MATLAB.
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4.4 Gremillion and Orville (1999) Comparison

The final comparison in this study includes the traditional (i.e. non-DP) radar

lightning initiation prediction technique described in Gremillion and Orville (1999).

The highest preforming LIST, Z ≥ 40 dBZ for two consecutive volume scans at the

−10◦C thermal height, from the study was tested on the final Utah dataset. By

testing a traditional radar forecast method against a DP method, it can provide

insight into its skill over DP lightning prediction and its spatial behavior. This is

shown by computing the same eight forecast metrics from before, with 95% CIs, and

comparing lead time differences. The Utah Gremillion method is compared against

the Travis method for both the CCAFS/KSC and Washington, D.C. areas.
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Figure 25. All five forecast metrics with 95% CI for the southwest Utah, CCAFS/KSC,
and Washington, D.C. areas. The metrics for southwest Utah are based on Gremillion’s
highest-performing LIST, while the other two use Travis’ forecast method. The metrics
indicate that PFA and CSI are similar for both Utah and Washington, D.C. despite
different forecast methodologies. Image produced in MATLAB.
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Southwest Utah, CCAFS/KSC, and Washington, D.C. Forecast Metrics

Southwest Utah* CCAFS/KSC Washington, D.C.
POD 0.2500 0.8889 0.7222
FAR 0.7907 0.0588 0.5000
PFA 0.5152 0.0769 0.4063
TSS -0.2652 0.8120 0.3160
CSI 0.1286 0.8421 0.4194

Mean OUI 0.1751 0.7504 0.5311
Median OUI 0.1464 0.7067 0.4990
Mean OUI* 0.1848 0.7111 0.5108

Median OUI* 0.1529 0.6848 0.4849
Mean OUI† 0.1751 0.7504 0.5108
Median OUI† 0.1464 0.7067 0.4849

Table 7. The eight forecast metrics for the southwest Utah, CCAFS/KSC, and Wash-
ington, D.C. regions. The asterisk denotes the regions in which Gremillion’s LIST was
applied; all other locations are based on Travis’ method. The red text indicates the
less-than-favorable metric as compared to the other location.

Table 7 summarizes the eight forecast metrics calculated using Gremillion’s LIST

for southwest Utah and Travis’ method for CCAFS/KSC and Washington, D.C. Sim-

ilar to the two previous comparisons, southwest Utah had the worst scoring metrics

among the three testing regions. Only one of the eight forecast metrics improved over

Travis’ method in Utah. Table 3 shows a PFA of 0.8485, which decreased to 0.5152

when Gremillion’s method was applied. This result was somewhat expected, as the

low Z threshold in Travis (2015) often resulted in FAs. A high number of FAs were

the main issue with Travis’ method in Washington, D.C. as well. (Olsen, 2018). How-

ever, raising the Z requirement to 40 dBZ in the Utah region may be too high, as the

other seven forecast metrics worsened. Figure 25 shows the eight forecast metrics and

their corresponding 95% CIs. It was interesting that, despite using different lightning

forecast methodologies, PFA and CSI were identical for Utah and Washington, D.C.

This suggests that Gremillion’s method for Utah and Travis’ method for Washington,

D.C. perform equally ineffective in terms of FA occurrence and overall forecast skill.
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Figure 26. The three modified versions of OUI for all three locations. Southwest Utah’s
data was computed using Gremillion’s LIST and the other two locations utilized Travis’
method. Image produced in MATLAB.

The three OUIs were next compared to demonstrate overall operational utility

of Gremillion’s lightning prediction method for use in Utah. Figure 26 indicates the

three mean modified OUIs with their corresponding 95% CIs. OUI*, in this case, had

the highest mean for Utah/Washington, D.C. and its worst score for CCAFS/KSC.

This resulted from CCAFS/KSC having the highest overall maximum lead time at

49.8167 minutes (Table 4). It is also important to note that Gremillon’s method for

Utah produced results that were statistically different from the other two locations.

Lastly, a comparison of lead times for the three locations was examined. Table 8

summarizes the mean, median, and maximum lead times for southwest Utah using

Gremillion’s method, and Travis’ method for CCAFS/KSC and Washington, D.C. For

the first time in this study, Utah did not have the lowest scoring forecast metric. The

median lead time for southwest Utah was at 7.0000, which bested CCAFS/KSC by
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Southwest Utah, CCAFS/KSC, and Washington, D.C. Lead Times

Southwest Utah* CCAFS/KSC Washington, D.C.
Mean Lead Time (mins) 10.4444 11.8372 12.8462

Median Lead Time (mins) 7.0000 6.6000 9.0000
Maximum Lead Time (mins) 27.0000 49.8167 37.0000

Table 8. The mean, median, and maximum lead times using Gremillion’s LIST for
southwest Utah and Travis’ method for CCAFS/KSC and Washington, D.C. The red-
colored text indicates the worst lead time, as compared to the other locations.

Figure 27. The mean and median lead times with 95% CI bounds for all three locations.
All three locations were generally alike, despite different locations and lightning forecast
methodologies. Images produced in MATLAB.
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0.4000 minutes. Given the stricter requirements of the Gremillion method, where two

consecutive volume scans are necessary, one would think this would result in lost lead

time; however, the opposite was observed. Figure 27 shows the mean and median lead

times for each location, with their 95% CIs. More information regarding the spread of

the data can be inferred from this plot. Southwest Utah had the largest extent of lead

times. The close proximity of the median lead times of Utah and CCAFS/KSC was

also interesting, as this finding was similar to the Travis Utah dataset, where both

locations’ medians were within a minute of one another. The similar medians of Utah

and CCAFS/KSC further suggests similar airmass-type thunderstorms between the

two locations. This is in contrast to the Washington, D.C. area, where synoptically-

driven multicellular thunderstorms are more common than airmass thunderstorms.

4.5 Additional Findings

This section focuses on some of the additional findings that were made evident

while analyzing the main research objective. This includes the range of Z and ZDR

values for cells in the final dataset, the occurrence/non-occurrence of lightning in

unusual atmospheric conditions, and an optimization of Z and ZDR LIST thresholds.

4.5.1 Reflectivity

During the process of thunderstorm cell interrogation, it was observed that Travis’

ZDR threshold requirement was met in every case and with considerably more lead

time than Z. This result was similar to Olsen (2018), where it was discovered that

ZDR was always met prior to or at the same time as the Z threshold. Olsen stated

that Z was the determining factor as for whether or not a cell produced lightning.

The reason for ZDR preceding Z stems from the interactions of graupel, ice, and

water particles during the early stages of thunderstorm development. The ZDR radar
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product easily differentiates between these spherical and non-spherical hydrometeors

during the collisions and coalescence stage. This is in contrast to Z, which requires

a much larger target to scatter enough reflected energy back to the radar antenna.

These reflections do not usually occur until large rain drops or hailstones are present

in the thunderstorm and well after the first lightning strike. The findings from this

study concur with Olsen (2018) that Z is the determining factor for Utah lightning.

ZDR will be analyzed in the next section to determine the optimal value for Utah.

In GR2Analyst, the highest Z and ZDR values were recorded for each cell. For

lightning producing cells, this value was defined as the ‘instantaneous’ Z or ZDR

value; non-lightning producing cells were defined as the ‘highest’ Z or ZDR values.

Instantaneous radar thresholds are explained as the largest Z or ZDR value in the

cell during actual lightning discharge at zero lead time. Table 9 shows the mean Z

value for non-lightning producing cells and lightning producing cells. The difference

between the two Z means was less than a tenth of one dBZ. This conveys the difficulty

in choosing a Z threshold that can accurately predict the occurrence of Utah lightning.

Another interesting observation noted from the research study was the extent of

Z values for both non-lightning and lightning producing cells. Figure 28 shows his-

tograms for both scenarios on the southwest Utah final dataset. The range of Z

values for both lightning and non-lightning occurring cells was interesting, as there

are numerous cases where lightning occurred despite Z ≤ 30 dBZ. This was an unan-

ticipated result because most radar/lightning studies show Z ≈ 35 dBZ at the −10◦C

Mean Southwest Utah Reflectivity

Mean Highest Z Mean Instantaneous Z
Lightning DNE 38.697 dBZ Lightning Occurs 38.725 dBZ

Table 9. The mean highest Z recorded in non-lightning producing cells and the mean
instantaneous Z in lightning producing cells. The highest Z value is defined as the
highest recorded dBZ value for a non-lightning producing cell. Conversely, the instan-
taneous Z is the largest reflectivity value at the time of lightning initiation.
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Figure 28. Histograms showing (a) the instantaneous Z in lightning producing cells
and (b) the highest Z in non-lightning producing cells. The overall average Z was
38.711 dBZ, with (a) averaging 38.725 dBZ and (b) averaging 38.697 dBZ. The range
of overall Z shows the difficulty in narrowing down a single Z threshold for use in Utah
lightning prediction methods. Images produced in MATLAB.

height provides the best performance regardless of location (Yang and King, 2010).

Analyzing these peculiar results further was necessary in order to determine the cause.

Radar and LMA coverage were both first re-examined to ensure that the Z ≤ 30

dBZ cases fell within bounds of both sensors. After verifying they met the final

dataset criteria, both sensor statuses were also checked to confirm they were both

fully operational. Next, the locations of the cells were plotted using Matlab to

see if the cells were forming in a similar area or along a particular terrain feature.

This revealed that the cells had a spatial pattern south of the TA LMA, in an area

characterized by a large dry lake bed. The researcher then began to look into the

potential impacts of dust on cell formation by downloading past weather observations.

IEM (2018) was utilized to download historical weather observations across four

different airports nearest the dry lake bed area for the dates when lightning occurred

with Z ≤ 30 dBZ. It was found that for each day, there were gusty wind conditions

reported at each observing location from the southwesterly direction, across the lake
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bed. The researcher hypothesizes that the increased wind speeds lofted dust into the

air from the dry lake bed, thus allowing the foreign aerosol to act as CCN. This,

in turn, expedited the thunderstorm charging process and allowed lower Z values to

correspond to lightning. This theory is supported by a Saharan dust impact study on

convective clouds in Koren et al. (2005), where it was discovered that the presence of

dust aerosols correlate strongly with the structural properties of convective cloud fea-

tures. This was caused by the large abundance of aerosols acting as additional CCN,

enabling more numerous and smaller cloud droplets to grow through the collisions

and coalescence process (Koren et al., 2005). This same type of aerosol invigoration

may have occurred in Utah and explain why lower Z values correspond to lightning.

Perhaps the most puzzling result of this study were the few cases where cells

containing Z ≥ 45 dBZ did not produce lightning. This finding was examined fur-

ther using the same process described above; however, no spatial pattern, nor any

seasonal/time dependence was observed in the data. The elevation impacts on thun-

derstorm development were next considered. As noted in Chapter II, the electric field

level required for lightning discharge at 6 km altitude is approximately 1/3 of what is

required at sea level (Rakov and Uman, 2003). This is due to the decreased air pres-

sure, which increases droplet size. It is possible that there are unknown impacts of the

high Utah elevation environment on large droplet behavior within thunderstorms. Or

perhaps there was another meteorological or non-meteorological component involved

in the charging process that was acting as an insulator, ultimately restricting the

lightning strike. However, investigating this concept further is beyond the scope of

this study.

The large spread of Z values for both lightning and non-lightning producing cells

indicates the difficulty in forecasting Utah lightning initiation. Travis’ Z threshold

outperformed Gremillion’s Z requirement only because it was lower and required one
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Southwest Utah Z Performance

Z Value (dBZ) Hit Rate FA Rate TSS
35 0.6111 0.8082 −0.2828

35.5 0.5555 0.7368 −0.2929
36 0.5555 0.7368 −0.2929

36.5 0.4722 0.7424 −0.2547
37 0.4722 0.7258 −0.2095

37.5 0.4722 0.7068 −0.1489
38 0.4444 0.6862 −0.0858

38.5 0.4444 0.6800 −0.0707
39 0.3611 0.7173 −0.1388

39.5 0.3333 0.6923 −0.0757
40 0.3333 0.6756 −0.0454

40.5 0.3055 0.6764 −0.0429
41 0.3055 0.6451 +0.0025

41.5 0.3055 0.6451 +0.0025
42 0.2222 0.6923 −0.0505

Table 10. A tabular summary indicating the hit rate, FA rate, and TSS for different
Z thresholds. Note: The hit rate and FA rate are not the same as POD and FAR,
respectively. They are values obtained from counting the number of hits, misses, CRs,
and misses using histogram data obtained from Figure 28.

volume scan. If Gremillion’s Z parameters were reduced and lowered to one volume

scan, it would have likely produced better results. This idea serves as the basis of

improving the performance of a new Z prediction threshold and optimizing it for the

Utah region. Table 10 shows the tabular summary of the hit rate, FA rate, and TSS

score for 15 different Z thresholds. The hit rate and FA rate are calculated the same

as POD and FAR, respectively. However, they are named differently because of the

process used to tabulate the number of hits, misses, and CRs from histogram data

obtained in Figure 28. Calculating forecast metrics using histogram data provided a

rough optimization of the data because it contains error associated with the assump-

tions used in creating both histograms. For example, the instantaneous Z may not

be the actual Z during discharge, as it was instead recorded as the closest Z to the

actual lightning strike. This occurred because the radar volume scan did not always
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occur exactly at the same time of the first lightning strike. As such, the actual in-

stantaneous Z value could be higher or lower than the closest recorded time. A small

amount of experimental error resulted using this method and continued to propagate

as the data was further manipulated. Nonetheless, the chosen method provides a

generalized optimization of Utah Z thresholds acceptable for forecasting purposes.

Figure 29 shows the hit rate and FA rate columns from Table 10 plotted onto a

scatter plot, with a least squares fitting power law curve. Hit rate decreased more

steeply with increasing Z; FA rate also decreased with Z, but more linearly than

hit rate. The 38 dBZ threshold, where the hit and FA rates are half-way to their

minimums, may be the optimal Z value because it is balanced in terms of maximizing

hits/minimizing FAs. Because the hit rate directly corresponds to personnel safety,

most forecast units will err on the side of safety and opt for a lower Z value. However,

the high number of FAs that result from a low Z value can also evolve into a safety

issue. This is because too many FAs over time can reduce the seriousness of an issued

lightning watch and ultimately reduce forecast credibility for the issuing organization.

If this becomes the case, operators may not heed necessary safety precautions when

lightning watches and warnings are issued, putting them at risk. Utah is one example

of a location where FAs need to be regarded equally with hits when considering safety.

One additional statistic that can be utilized in determining the optimal Z value is

TSS because it indicates how well a method performs at predicting the occurrence or

non-occurrence of an event (Joliffe and Stephenson, 2003). Table 10 shows the TSS

values computed for each Z value. Overall, most Z values resulted in negative TSS

scores, which imply poor forecast skill. However, the only two Z values that resulted

in positive TSS scores, were the 41 and 41.5 dBZ thresholds. These Z thresholds

correspond to the same Z value for the minimum rate of FAs. Figure 30 shows the

TSS score on a scatter plot against increasing Z values, with a power curve best fit.
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Figure 29. An optimization of Z for the southwest Utah final dataset utilizing the
number of hits, misses, CRs, and FAs from the histograms in Figure 28. The red line
indicates the power law function for best fit. The hit rate plot mirrors a negative
exponential decay with with increasing Z values, while FA rate is more linear. Images
produced in MATLAB.
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Figure 30. An optimization of Z for the southwest Utah final dataset utilizing the
number of hits, misses, CRs, and FAs from the histograms in Figure 28. The red line
indicates the power law function for best fit. A positive TSS is observed at 41 dBZ,
due to the large decrease in the number of FAs. Image produced in MATLAB.
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4.5.2 Differential Reflectivity

While the mean Utah Z varied little between lightning producing cells and non-

lightning producing cells, there was a significant difference with ZDR. Table 11 details

the mean highest ZDR in non-lightning producing cells and the mean instantaneous

ZDR in lightning producing cells. The ≈ 2 dB difference confirms the association of

Utah lightning with high ZDR values. This results from the collisions and coalescence

of graupel, ice, and water droplets within the mixed phase of thunderstorms. This

process then causes hydrometeors to grow, allowing for increased detection by ZDR.

Similar to Z, an optimization of ZDR for the Utah dataset was accomplished using

histogram data in Figure 31. The hit rate, FA rate, and TSS were then computed for

varying ZDR thresholds. Table 12 shows the three forecast metrics computed for 13

different ZDR thresholds. A perfect hit rate of 1.0000 was recorded for 1.25 dB and

1.30 dB, but both thresholds also had the highest FA rates. Like the Z optimization,

lower ZDR thresholds resulted in higher hit rates, but increased FA rates. Increasing

Figure 31. A histogram showing (a) the instantaneous ZDR in lightning producing cells
and (b) the highest ZDR in non-lightning producing cells. The overall average ZDR

was 1.57 dB, with (a) averaging 2.98 dB and (b) averaging 0.814 dB. Images produced
in MATLAB.

66



Mean Southwest Utah Differential Reflectivity

Mean Highest ZDR Mean Instantaneous ZDR

Lightning DNE 0.814 dB Lightning Occurs 2.98 dB

Table 11. The mean highest ZDR recorded in non-lightning producing cells and the
mean instantaneous ZDR in lightning producing cells. The highest ZDR value was
defined as the highest recorded dB value for a non-lightning producing cell. Conversely,
the instantaneous ZDR was the differential reflectivity value at the time of lightning
initiation.

Southwest Utah ZDR Performance

ZDR Value (dB) Hit Rate FA Rate TSS
1.25 1.0000 0.2000 0.8636
1.30 1.0000 0.1818 0.8787
1.35 0.9722 0.1666 0.8661
1.40 0.9722 0.0789 0.9267
1.45 0.9444 0.0810 0.8989
1.50 0.9444 0.0810 0.8989
1.55 0.9166 0.0571 0.8863
1.60 0.9166 0.0571 0.8863
1.65 0.9166 0.0294 0.9015
1.70 0.9166 0.0294 0.9015
1.75 0.9166 0.0294 0.9015
1.80 0.9166 0.0294 0.9015
1.85 0.8888 0.0300 0.8737

Table 12. A tabular summary indicating the hit rate, FA rate, and TSS for different
ZDR thresholds. Note: The hit rate and FA rate are not the same as POD and FAR,
respectively. They are values obtained from counting the number of hits, misses, CRs,
and misses using histogram data obtained from Figure 31.
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the ZDR threshold decreased the FA rate, but at the expense of hit rate. Figure 32

shows the hit/FA rate values from Table 12 plotted with a best fitting power curve.

Both scatter plots show the inverse relationship between the two forecast metrics, as

made evident by the decline in forecast performance with increasing ZDR thresholds.

A better indicator of overall forecast skill for ZDR over hit rate and FA rate alone

is TSS. Figure 33 shows the TSS data from Table 12 plotted against increasing ZDR

values, with a best fitting power curve. The leveling of the power curve at ≈ 1.50 dB

corresponded with the highest hit rates and lowest FA rates. Unlike the Z TSS opti-

mization, all TSS scores for ZDR were positive, which suggest relatively high forecast

skill in the chosen DP thresholds. This was because Travis’ ZDR threshold was too

easily met, regardless whether the cell produced lightning or not. The large difference

in the optimal ZDR values for Utah and CCAFS/KSC lightning initiation indicate

that ZDR lightning prediction is not geographically robust. This unanticipated result

may suggest that other DP radar variables follow similar spatial tendencies as ZDR.
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Figure 32. An optimization of ZDR for the southwest Utah final dataset utilizing the
number of hits, misses, CRs, and FAs from the histograms in Figure 31. The red line
indicates the power curve best fit. Hit rate appears to decrease more linearly than FA
rate, which decreases similar to a negative exponential. Images produced in MATLAB.
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Figure 33. An optimization of ZDR for the southwest Utah final dataset utilizing the
number of hits, misses, CRs, and FAs from the histograms in Figure 31. The red line
indicates the power curve best fit. Flattening of the curve around 1.50 dB suggests
that ZDR values any higher result in similar scores. Image produced in MATLAB.

69



V. Conclusions

Chapter V summarizes the results of this study and provides insight and rea-

soning behind each outcome. This chapter also explains the additional research that

should be conducted in order to fill knowledge gaps, streamline future lightning-

related research, and improve upon the findings of this study.

5.1 Summary

Lightning is a dangerous weather phenomenon that causes significant impacts to

life and property. Many USAF air and space operations require accurate thunder-

storm forecasts so that safety precautions are taken in order to minimize lightning

impacts. The 45 WS is entrusted with mitigating thunderstorm impacts for America’s

manned spaceflight port, over 25,000 personnel, and more than $20 billion in assets

at CCAFS/KSC and Patrick AFB (Roeder, 2018). Weather radar is the primary

meteorological tool utilized by 45 WS forecasters for short-term lightning prediction.

Improving upon pre-existing lightning prediction methods, such as the Gremillion

and Travis methods, can bolster personnel safety and lightning forecast accuracy.

Additionally, if the two prediction methods verified well in Utah, it could suggest

that radar lightning signatures are identical across different climates and potentially

be used in the creation of a new lightning product within the NEXRAD network.

A prior study by Gremillion and Orville (1999) showed that Z ≥ 40 dBZ at

the −10◦C thermal height, for two consecutive volume scans, was the best predictor

for CG lightning initiation in the CCAFS/KSC area. However, with the advent

of DP radar into the NEXRAD network the early 2010s, research studies regarding

forecast skill using DP radar began to populate. Woodard et al. (2012) and Thurmond

(2014) were two DP studies that suggested a combination of Z and ZDR predictors
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can improve forecast skill over methods utilizing Z alone. This was verified by a

follow-up study conducted by Travis (2015). Travis found that the Z ≥ 36.5 dBZ

with ZDR ≥ 0.31 dB at the −10◦C thermal height was the best combination of

radar parameters for lightning prediction in the CCAFS/KSC area. Travis indicated

that ZDR was the preferred DP predictor, due to elevated ZDR values indicating

the presence of wet ice particles and supercooled water droplets in Florida-based

thunderstorms. These two mixed phase hydrometeors are the primary components

in the cloud electrification process and generate a ZDR column that can be easily

detected by weather radar.

Gremillion and Orville (1999) utilized both the local WSR-88D and the NLDN for

their research. Travis (2015), however, used the same WSR-88D and the 4DLSS at

CCAFS/KSC. This study utilized an identical lightning detection system to Travis,

the TA LMA, and KICX and KMTX WSR-88Ds. One objective of this study was to

research the applicability of both lightning prediction methods to a new geographical

area. This was accomplished by applying both methods to 102 isolated, warm-season

thunderstorms spanning three years across southwest Utah. By testing the tradi-

tional radar method from Gremillion and Orville (1999), it allowed the opportunity

to compare forecast skill between non-DP and DP techniques. Lastly, the results

of this study were also compared to Olsen (2018), where she completed a similar

experiment. Olsen applied Travis’ thresholds to the Washington, D.C. area to test

the usability of the CCAFS/KSC radar parameters in a new climate. Olsen’s results

revealed that the forecast metrics between that study and Travis’ were statistically

different and that Travis’ thresholds did not perform well for the new area. By

comparing the results of this study to Olsen’s, it allowed for the comparison of DP

prediction thresholds across different climates, and to infer new spatial information

about DP lightning prediction.
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5.1.1 Travis Lightning Prediction Method

The first results from this study concluded that the lightning initiation methods

from Travis (2015) do not perform well when applied to the southwest Utah area.

This was made evident by multiple tables and figures, which document the poor

performance of his DP method. Figure 19 shows the significant difference of the

five forecast metrics between the southwest Utah and CCAFS/KSC areas. The only

metric that was statistically similar was POD, where a slight overlap in the 95% CI

bounds was observed. This suggests that POD for this study was comparable to

Travis (2015). Interestingly, this was an identical finding to Olsen (2018), where it

was found that POD was similar for the Washington, D.C. and CCAFS/KSC areas.

The poor performance of Travis’ method to Utah is further verified by the com-

parison of the three OUIs. Figure 20 shows the three modified OUIs among southwest

Utah and CCAFS/KSC. All three OUIs were statistically different from one another,

indicating the sub-par performance of Travis’ thresholds in Utah. However, OUI†

and OUI shared the highest scores for both areas, suggesting that either limiting

the ‘MaxLeadTime’ term to 30 min or using 30 min alone are equal. The reason

for the significant difference between the CCAFS/KSC and Utah OUIs was the high

number of FAs for the Utah dataset, which comprised 55% of the total forecast out-

comes. While the forecast metrics were almost entirely different from one another,

lead times were comparable. It was also interesting to note that Utah’s OUIs varied

little among each other, which concurred with an OUI comparison study completed in

Nava (2018). Figure 21 shows the mean and median lead times for the two locations.

A large amount of overlap by the CI bounds indicated that they were statistically

similar. This finding was identical to Olsen (2018), where it was concluded there was

no significant difference between the Washington, D.C. and CCAFS/KSC lead times.
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Comparing the results from Olsen (2018) and Utah reveal new findings. Figure 22

shows that POD, FAR, and CSI are statistically similar, while PFA and TSS were

different. It was interesting that despite the significant differences in climate and ter-

rain between Washington, D.C. and Utah, the forecast metrics remain generally alike.

Similarities were further supported by the comparison of the three OUIs. Figure 23

shows that the three OUIs are similar, with OUI being the highest performing metric

for both locations. Lead times between the two locations were also compared in order

to document similarities/differences. Table 6 shows that both locations coincidentally

had the same maximum lead time. Similar to the Travis comparison, lead times were

statistically similar, despite different geographical regions. As both of these locations

are along the same latitude, it is possible to suggest that additional locations along

the same latitude (i.e. Kansas City, Cincinnati) have similar LISTs. This is especially

true for mid-latitude locations, where frontal systems dominate the weather pattern.

5.1.2 Gremillion Lightning Prediction Method

The highest performing LIST forecast method from Gremillion and Orville (1999)

does not perform well when applied to the southwest Utah area. Similar to the

previous locations, various figures and tables indicate poor performance. Figure 25

shows the five forecast metrics for Gremillion’s method applied to the Utah dataset,

compared to Travis’ method for the other two locations. PFA and CSI were similar

for Washington, D.C. and southwest Utah despite different forecast methodologies.

Further evidence of performance was observed in the OUI comparisons. Figure 26

indicate that using Gremillion’s method for Utah is inferior to Travis’ method for the

other two locations. OUI was the highest scoring metric for all three locations. Lead

times were also compared to one another. Despite requiring stricter radar criteria

(one additional volume scan than Travis and higher Z), the median lead time was
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higher for Utah than CCAFS/KSC. This may be the result of thunderstorm intensity

differences. Figure 27 shows the lead times with 95% CI bounds. Lead times were also

all similar, as made evident by the overlapping CI bounds in all three comparisons.

5.1.3 Poor Forecast Performance Rationale

Reasons for the poor performance of both the Gremillion and Travis lightning

prediction methods stem from the terrain and cloud droplet differences between Utah

and central Florida. Utah elevation averages 2,300 ft, while CCAFS/KSC is approx-

imately at sea level. Altitude already has a documented and well-known effect on

electrical fields, and therefore, lightning discharges. Utah summers are also com-

posed of a continental hot dry atmosphere, while Florida summers are in a maritime

warm moist atmosphere. Cloud droplet spectra differences between the two loca-

tions are also well known. Continental cumulus clouds have a high concentration of

small droplets and narrow size spectrum, while maritime cumulus clouds have a small

concentration of large droplets and a broad size spectrum (Rogers and Yau, 1989).

These droplet differences have an impact on the thunderstorm charging mechanisms,

and thus, an effect on lightning initiation. This was further proven in the differences

between optimal ZDR values in Utah and CCAFS/KSC. Travis found the optimal

ZDR value to be ≥ 0.31 dB. For Utah, ZDR needs to be at least 1.40 dB or greater,

depending on the desired balance of hits to FAs. This suggests that ZDR lightning

initiation is not geographically robust, as opposed to Z which performs well for any

location around 35 dBZ at the −10◦C thermal height (Yang and King, 2010).

Significant climate differences between southwest Utah, CCAFS/KSC, and Wash-

ington, D.C. are likely why both prediction methods performed poorly. The summer

weather in Utah is primarily determined by the onset, location, and intensity of heat

lows that formed as a result of the North American Monsoon. This seasonal fea-
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ture brings widespread thunderstorms and precipitation across the southwest United

States. This is a drastic difference to the climate of CCAFS/KSC, where land and

sea-breeze interactions are the primary weather driver. These micro-scale meteoro-

logical features are difficult to predict, as the onset and timing is controlled by many

local factors. Washington, D.C. is more similar to CCAFS/KSC than Utah, because

of the similar east coast locations. However, weather in Washington, D.C. is primarily

driven by synoptic-scale mid-latitude weather features such as cold and warm fronts.

Utah also experiences similar mid-latitude fronts, but the topography and monsoon

is accepted as the primary weather driver.

It appeared during the course of the research that Travis’ lightning prediction

method was better than Gremillion’s for Utah. However, Travis’ ZDR threshold was

met in every case, rendering it useless as a predictor of lightning. Also, Travis’ method

only required one volume scan, giving his method more lead time than Gremillion’s.

Instead, it was Travis’ lower Z threshold that caused his method to perform better

than Gremillion’s. Similar to conclusions in Olsen (2018), simplicity is better when

forecasting operationally. Therefore, utilizing Z alone for predicting Utah lightning is

superior over a mix of radar variables, and should be used as the determining factor.

5.1.4 Southwest Utah Z and ZDR Optimization

If Z is found to be the determining factor for a particular location, weather forecast

units should tailor this radar threshold across their respective AORs. Accomplishing

a generalized optimization for the southwest Utah area revealed that the hits and

FAs are inversely related. Forecasters need to remain wary of choosing a Z value that

results in the highest POD, because it can also have a large FAR/PFA. FAs need to

be regarded just as highly as hits due to the impact on forecaster credibility. If a

unit’s FAR/PFA is consistently too high, customers will disregard forecast warnings
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and not take the necessary safety precautions ultimately putting them at risk. While

fully optimizing the Utah dataset extends beyond the scope of this study, Table 10

shows the impacts of hit rate, FA rate, and TSS across different Z values for Utah.

Lastly, as an additional measure in this study, the mean highest and instantaneous

ZDR was optimized. Table 12 shows the hit rate, FA rate, and TSS score across

different ZDR thresholds. Utilizing the 0.31 dB threshold from Travis (2015) was too

low for the Utah region, because it caused too many FAs. Raising the DP requirement

to a value of at least 1.25 dB or greater would result in better performance. This

was supported by the TSS optimization, indicating 1.45 or 1.80 dB as preferred ZDR

thresholds. This also indicated that ZDR thresholds vary greatly by region and would

require complete optimization in order to use them confidently in forecasts. As such,

Z is found to be the determining factor for Utah lightning initiation. Optimizing this

value for AORs will produce better results than a fixed combination of Z and ZDR.

5.2 Recommendations for Future Work

This study provided new insight into the challenging problem of forecasting light-

ning initiation, however, continued research on this subject should be considered in

order to further improve forecast techniques. More specifically, completing regional

optimizations of weather radar lightning initiation signatures across the nation. Con-

ducting an optimization for each of the 159 WSR-88Ds in the NEXRAD network is the

ideal solution as it could warn weather forecasters of an impending lightning strike.

This would greatly increase personnel safety and minimize lightning’s costly impacts.

However, manually optimizing radar lightning initiation thresholds for several hun-

dred different locations would be a tremendous task and needs to be computerized.

One such automation process, known as machine learning, offers a potential solution.
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5.2.1 Optimize and Refine Current Systems

Machine learning, also regarded as artificial intelligence (AI) methods, should be

utilized to conduct optimizations across each region, as it has been proven in this

study and Olsen (2018) that lightning initiation signatures are not universal. It is

likely that across different regions there exists different and higher-performing light-

ning determining factors than Z. For instance, this study and Olsen (2018) agree

that Z is the determining factor, while others (Woodard et al. (2012), Thurmond

(2014), Travis (2015)) suggest the use of ZDR. Use of Level III radar products, such

as the Hydrometeor Classification Algorithm or Echo Tops, could potentially be used

to predict lightning in other areas. These optimizations could be accomplished using

radar data against other LMAs (i.e. Alabama, Colorado), the NLDN, or the Geo-

stationary Operational Environmental Satellite (GOES)-16 Satellite Geostationary

Lightning Mapper (GLM). Bottou et al. (2018) offers a potential starting point for

mathematical optimization options relating to large-scale machine learning methods.

5.2.2 Use Total Lightning Methods

In addition to machine learning/AI methods, it would be worthwhile to test Travis’

lightning prediction method against another prediction method that includes total

lightning (IC/CC/CG). Gremillion’s method was designed for use in forecasting CG

lightning strikes. Utilizing another total lightning method may produce unanticipated

research results. One potential total lightning initiation/cessation forecast method

developed for the 45 WS is detailed in Roeder and Pinder (1998). A list of empirical

forecast rules is described here which contains the ‘Pinder Principles’ for lightning

cessation and six different lightning onset scenarios using weather radar. Testing this

Florida prediction method in new geographical regions may reveal new findings.
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5.2.3 Develop Procedures Similar to LLWAS

The future of lightning forecasts will likely be as effective as the prediction of wind

shear events generated by microbursts at major airports across the United States.

The FAA attributes wind shear as the probable cause for over 35 air carrier and air

transport accidents between 1964 and 1976 (FAA, 1983). Once a seemingly impossible

weather event to forecast, wind shear events have largely been mitigated by the

invention of a radar-based prediction system. The Low Level Wind Shear Alert

System (LLWAS) utilizes a network of ground-based sensors and weather radars to

alert pilots and air traffic controllers of impending wind shear events (Vaisala, 2018a).

In a similar way, ground or space-based sensors could be utilized with weather

radar to support air and space launch operations at USAF facilities by prompting

weather forecasters of an imminent lightning threat. Such a system would reduce

thunderstorm disruptions, such as the 15 min delay for lightning threats, to USAF

air and space operations and increase overall operational effectiveness and safety. The

key to developing such a system is possible through the use of machine learning and AI

methods to develop region-specific radar lightning initiation signatures. The results

of this study suggest that lightning safety in USAF air and space operations could

greatly be improved upon if machine learning and AI optimization techniques are

employed onto current and future weather radar and lightning detection technology.
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Appendix A. Final Dataset Spreadsheet

Case Date Start Time End Time LatS LatN LonE LonW Radar Avg ‐10C (ft) Correction Actual Initiation ZDR Initiation Z Initiation Both Met Result LT (min) Both Met Result LT (min) Z (dBZ) ZDR (dB)

1 8/8/2015 1800Z 1900Z 38.167 38.408 ‐113.384 ‐113.7 16122 10118 18 hours, 7 mins, 33.6 secs 17:56:48 18:00:33 18:00:33 Hit 7 18:04:18 Hit 3 43 3.12

2 8/11/2015 1800Z 1830Z 38.338 38.794 ‐112.341 ‐112.649 16566 10562 18 hours, 2 mins, 28.8 secs 17:30:56 17:40:30 17:40:30 Hit 22 17:45:33 Hit 17 41 2.84

3 8/13/2015 2110Z 2200Z 38.519 38.953 ‐112.248 ‐112.605 17893 11889 21 hours, 10 mins, 33.5 secs 20:50:15 20:53:57 20:53:57 Hit 17 21:03:25 Hit 7 37 3.4

4 8/21/2015 2030Z 2130Z 38.651 38.887 ‐112.759 ‐113.056 16131 10127 20 hours, 34 mins, 45.4 secs 20:26:16 20:30:04 20:30:04 Hit 5 20:41:07 Miss 42 3.88

5 8/22/2015 2120Z 2200Z 38.425 38.563 ‐113.748 ‐113.913 16378 10374 21 hours, 28 mins, 58.9 secs 21:02:13 21:22:08 21:22:08 Hit 6 21:32:04 Miss 40 2.72

6 8/23/2015 2100Z 2130Z 38.316 38.486 ‐113.55 ‐113.759 17126 11122 DNE 20:55:23 21:06:51 21:06:51 FA Never Met CR 40 1.5

7 8/23/2015 2000Z 2100Z 38.335 38.412 ‐112.127 ‐112.309 17126 11122 DNE 19:57:26 20:01:18 20:01:18 FA 20:05:07 FA 40 1.38

8 8/27/2015 2025Z 2100Z 38.335 38.439 ‐112.556 ‐112.764 17054 11050 20 hours, 24 mins, 36.9 secs 20:13:14 20:23:08 20:23:08 Hit 1 20:38:01 Miss 38.5 2.5

9 8/27/2015 1950Z 2035Z 40.257 40.444 ‐112.341 ‐112.594 KMTX 17054 15962 19 hours, 59 mins, 33.8 secs 19:46:33 19:51:27 19:51:27 Hit 8 19:56:21 Hit 3 43 5.13

10 8/29/2015 2130Z 2215Z 38.556 38.714 ‐112.094 ‐112.248 17193 11189 DNE 21:26:18 21:33:57 21:33:57 FA 21:45:25 FA 42 3.31

11 8/29/2015 2300Z 2330Z 39.763 39.966 ‐112.984 ‐113.187 KMTX 17193 16101 23 hours, 1 min, 10.5 secs 22:54:10 22:57:51 22:57:51 Hit 4 23:01:30 Miss 50.5 3.56

12 8/30/2015 2230Z 2300Z 39.626 39.862 ‐112.281 ‐112.561 KMTX 17604 16512 DNE 22:31:45 22:39:07 22:39:07 FA 22:42:49 FA 44 2.13

13 9/8/2015 0420Z 0545Z 38.428 38.67 ‐112.523 ‐113.16 16732 10728 DNE 4:02:10 4:09:48 4:09:48 FA Never Met CR 38 1.25

14 9/13/2015 2120Z 2200Z 38.758 38.879 ‐112.71 ‐112.885 15962 9958 DNE 21:17:33 21:22:29 21:22:29 FA 21:27:25 FA 40.5 1.31

15 9/15/2015 1820Z 1900Z 38.401 38.604 ‐112.6 ‐112.852 15354 9350 DNE 18:27:33 18:31:22 18:31:22 FA Never Met CR 36.5 0.38

16 9/23/2015 1940Z 2010Z 38.428 38.483 ‐112.589 ‐112.731 14925 8921 19 hours, 45 mins, 58.3 secs 19:36:43 19:40:31 19:40:31 Hit 5 19:49:15 Miss 45 4.06

17 9/23/2015 1940Z 2020Z 38.505 38.62 ‐113.154 ‐113.292 14925 8921 DNE 19:44:20 19:49:15 19:49:15 FA 19:59:08 FA 38.5 1.88

18 9/23/2015 2120Z 2200Z 38.829 38.923 ‐112.863 ‐112.99 14925 8921 21 hours, 23 mins, 30.5 secs 21:07:43 21:17:32 21:17:32 Hit 6 21:45:43 Miss 33.5 4.81

19 9/23/2015 2040Z 2200Z 39.856 39.999 ‐112.193 ‐112.435 KMTX 14925 13833 DNE 20:48:51 20:56:15 20:56:15 FA Never Met CR 39 2.94

20 5/15/2016 1910Z 2000Z 40.172 40.303 ‐112.297 ‐112.621 KMTX 13979 12887 DNE Never Met Never Met Never Met CR Never Met CR 34.5 2

21 5/16/2016 1600Z 1700Z 40.177 40.38 ‐112.797 ‐113.055 KMTX 11974 10882 DNE Never Met Never Met Never Met CR Never Met CR 35 0.81

22 5/16/2016 1840Z 1930Z 40.007 40.177 ‐112.286 ‐112.462 KMTX 11974 10882 DNE 18:54:37 19:02:02 19:02:02 FA Never Met CR 38 0.38

23 5/17/2016 1730Z 1800Z 39.738 39.886 ‐112.5 ‐112.736 KMTX 11407 10315 DNE 17:27:15 17:42:08 17:42:08 FA Never Met CR 36.5 0.75

24 5/17/2016 2100Z 2200Z 38.507 38.721 ‐112.917 ‐113.099 11407 5403 21 hours, 9 mins, 7.6 secs 20:58:29 21:07:01 21:07:01 Hit 2 21:11:16 Miss 42 2.31

25 5/17/2016 2130Z 2215Z 38.304 38.535 ‐113.489 ‐113.615 11407 5403 DNE 21:32:30 21:41:03 21:41:03 FA Never Met CR 37 0.31

26 5/24/2016 1850Z 1945Z 38.54 38.859 ‐112.462 ‐112.72 11478 5474 18 hours, 51 mins, 54.7 secs 18:39:03 18:49:20 18:49:20 Hit 2 Never Met Miss 36.5 2.56

27 5/24/2016 2320Z 0000Z 38.496 38.644 ‐113.022 ‐113.192 11478 5474 DNE 23:26:22 23:30:01 23:30:01 FA Never Met CR 37.5 0.31

28 5/25/2016 1930Z 2020Z 39.628 39.825 ‐112.775 ‐113.044 KMTX 11054 9962 DNE 19:30:19 19:38:56 19:38:56 FA Never Met CR 37 2

29 5/25/2016 2300Z 0000Z 38.826 38.979 ‐113.176 ‐113.324 11054 5050 DNE 23:03:03 23:18:01 23:18:01 FA 23:23:00 FA 46.5 0.5

30 5/26/2016 1950Z 2030Z 38.694 38.842 ‐112.582 ‐112.769 11187 5183 DNE 19:49:48 19:54:10 19:54:10 FA 19:58:31 FA 46.5 0.44

31 5/27/2016 1540Z 1630Z 39.831 40.001 ‐112.357 ‐112.588 KMTX 11413 10321 DNE 15:38:27 15:42:09 15:42:09 FA 15:49:34 FA 46 0.88

32 5/28/2016 1930Z 2030Z 39.88 40.023 ‐112.401 ‐112.593 KMTX 12301 11209 DNE 19:29:59 19:33:43 19:33:43 FA 19:37:26 FA 40.5 1.06

33 5/29/2016 1800Z 1900Z 40.001 40.177 ‐112.527 ‐112.731 KMTX 12572 11480 DNE 18:04:48 18:16:00 18:16:00 FA 18:19:45 FA 44 0.75

34 6/30/2016 2100Z 2200Z 39.781 40.001 ‐112.489 ‐112.775 KMTX 16694 15602 21 hours, 0 min, 5.6 secs 20:51:47 20:59:09 20:59:09 Hit 1 21:06:32 Miss 39 2.25

35 7/22/2016 2045Z 2200Z 38.672 38.87 ‐112.714 ‐112.967 17586 11582 DNE 20:46:07 20:50:02 20:50:02 FA Never Met CR 40.5 0.25

36 7/22/2016 2120Z 2230Z 38.436 38.595 ‐113.055 ‐113.22 17586 11582 DNE 21:27:05 21:34:27 21:34:27 FA Never Met CR 40 0.31

37 7/25/2016 1940Z 2100Z 38.54 38.738 ‐112.967 ‐113.154 16821 10817 DNE 19:38:47 19:43:06 19:43:06 FA 19:47:24 FA 43 0.5

38 7/25/2016 1940Z 2100Z 38.348 38.518 ‐113.214 ‐113.445 16821 10817 DNE 19:38:47 19:38:47 19:38:47 FA 19:51:41 FA 38.5 0.38

39 7/26/2016 2000Z 2100Z 38.024 38.221 ‐113.198 ‐113.379 17572 11568 20 hours, 3 mins, 25.9 secs 19:50:27 19:59:50 19:59:50 Hit 4 20:09:13 Miss 45 1.56

40 7/29/2016 1910Z 2000Z 38.024 38.15 ‐112.659 ‐112.841 17000 10996 19 hours, 11 mins, 44.5 secs 19:05:11 19:10:02 19:10:02 Hit 2 19:19:43 Miss 36.5 1.44

41 7/30/2016 1845Z 2000Z 38.469 38.666 ‐112.89 ‐113.06 17062 11058 DNE 18:49:15 18:56:23 18:56:23 FA 19:01:01 FA 45.5 0.31

42 7/30/2016 1945Z 2100Z 38.298 38.447 ‐113.538 ‐113.687 17062 11058 DNE 19:44:35 19:49:25 19:49:25 FA 19:59:05 FA 51 0.57

43 7/30/2016 2010Z 2100Z 38.551 38.65 ‐113.137 ‐113.357 17062 11058 20 hours, 18 mins, 50.6 secs 20:18:27 Never Met Never Met Miss 20:37:52 Miss 35 2

44 8/1/2016 1940Z 2030Z 38.227 38.414 ‐113.445 ‐113.626 17268 11264 19 hours, 44 mins, 42.6 secs 19:36:50 Never Met Never Met Miss 20:24:08 Miss 21.5 3.06

45 8/2/2016 1900Z 2000Z 38.266 38.453 ‐113.48 ‐113.667 17502 11498 19 hours, 46 mins, 27.9 secs 19:01:28 19:14:52 19:14:52 Hit 32 19:18:35 Hit 26 50 4.44

46 8/3/2016 1850Z 1930Z 38.404 38.574 ‐113.063 ‐113.233 17474 11470 18 hours, 55 mins, 10.7 secs 18:47:27 18:37:54 18:37:54 Hit 18 19:06:33 Miss 29 3.75

47 8/5/2016 1730Z 1810Z 38.343 38.541 ‐113.617 ‐113.821 17737 11733 DNE 17:26:58 17:34:24 17:34:24 FA 17:38:08 FA 44.5 1.75

48 8/5/2016 2210Z 2300Z 38.393 38.568 ‐112.898 ‐113.162 17737 11733 DNE 22:07:00 22:14:22 22:14:22 FA 22:18:04 FA 48.5 0.44

49 8/18/2016 2110Z 2200Z 38.645 38.843 ‐112.761 ‐112.931 15603 9599 21 hours, 12 mins, 8.1 secs 21:08:32 21:23:13 21:23:13 Miss 21:28:06 Miss 21.5 2.69

50 8/22/2016 2235Z 2315Z 38.305 38.48 ‐113.178 ‐113.37 15523 9519 22 hours, 31 mins, 34.3 secs 22:03:55 22:18:39 22:18:39 Hit 13 22:23:33 Hit 8 39 3.94

51 8/26/2016 1900Z 1945Z 38.354 38.497 ‐113.156 ‐113.365 14398 8394 DNE 18:59:08 19:18:36 19:18:36 FA 19:23:16 FA 36.5 0.25

52 9/11/2016 2130Z 2200Z 38.629 38.837 ‐112.887 ‐113.063 15911 9907 DNE Never Met 21:46:36 Never Met CR 21:50:28 FA 40.5 0.94

53 9/30/2016 1950Z 2020Z 38.283 38.502 ‐112.563 ‐112.832 15037 9033 DNE 19:47:45 Never Met Never Met CR Never Met CR 36 0.38

54 5/8/2017 1900Z 2010Z 39.771 39.991 ‐112.508 ‐112.728 KMTX 11689 10597 DNE 19:16:52 19:28:02 19:28:02 FA 19:31:57 FA 42 0.56

55 5/9/2017 1900Z 2000Z 39.639 39.837 ‐112.365 ‐112.557 KMTX 12546 11454 DNE 18:58:14 19:13:07 19:13:07 FA 19:26:28 FA 41 0.75

56 7/9/2017 2100Z 2145Z 38.338 38.524 ‐113.041 ‐113.189 17037 11033 21 hours, 8 mins, 56.0 secs 20:59:20 21:03:05 21:03:05 Hit 5 21:06:52 Hit 2 47 4.38

57 7/12/2017 2020Z 2100Z 38.447 38.579 ‐113.134 ‐113.332 17326 11322 20 hours, 20 mins, 30.0 secs 20:09:42 20:14:50 20:14:50 Hit 7 20:19:59 Hit 1 51.5 3

58 7/12/2017 2115Z 2200Z 38.393 38.563 ‐113.458 ‐113.623 17326 11322 DNE 21:06:17 21:16:34 21:16:34 FA Never Met CR 39 0.69

59 7/18/2017 1915Z 2030Z 38.371 38.541 ‐113.189 ‐113.381 17929 11925 DNE 19:23:32 19:29:01 19:29:01 FA 19:40:01 FA 50.5 0.69

60 7/21/2017 2200Z 2245Z 38.255 38.398 ‐113.134 ‐113.266 17659 11655 DNE 22:12:43 22:17:37 22:17:37 FA 22:22:31 FA 44 0.31

61 7/22/2017 2330Z 0000Z 38.574 38.761 ‐113.354 ‐113.557 18015 12011 23 hours, 36 mins, 32.5 secs 22:28:46 22:38:35 22:38:35 Miss 23:43:29 Miss 42 2.19

62 7/23/2017 2045Z 2130Z 38.64 38.87 ‐112.766 ‐112.98 17487 11483 DNE 20:50:53 20:55:47 20:55:47 FA Never Met CR 37 0.31

63 7/25/2017 2110Z 2200Z 39.832 40.002 ‐112.239 ‐112.464 KMTX 18105 17013 DNE 21:34:33 Never Met Never Met CR Never Met CR 29 0.57

64 7/25/2017 2130Z 2200Z 38.162 38.31 ‐113.37 ‐113.546 18105 12101 DNE 21:40:30 21:55:34 21:55:34 FA 21:55:34 FA 46.5 0.56

65 7/29/2017 2300Z 0000Z 38.398 38.607 ‐113.079 ‐113.315 17275 11271 23 hours, 1 min, 46.0 secs 23:01:22 23:11:09 23:11:09 Miss 23:16:01 Miss 27 2.5

66 7/31/2017 2200Z 2300Z 38.2 38.398 ‐112.607 ‐112.711 16848 10844 DNE 22:15:03 22:28:50 22:28:50 FA 22:32:48 FA 42.5 1.2

67 8/1/2017 1815Z 2000Z 38.305 38.464 ‐112.629 ‐112.799 16747 10743 DNE 18:11:26 18:16:20 18:16:20 FA Never Met CR 37 0.44

68 8/1/2017 1900Z 2000Z 38.327 38.469 ‐112.513 ‐112.667 16747 10743 DNE 19:02:17 19:06:56 19:06:56 FA 19:16:16 FA 43 0.56

69 8/2/2017 1830Z 1900Z 38.321 38.453 ‐112.684 ‐112.826 17101 11097 DNE 18:33:26 18:43:13 18:43:13 FA 18:48:07 FA 40 0.31

70 8/2/2017 1900Z 1935Z 38.42 38.513 ‐112.612 ‐112.782 17101 11097 DNE 18:59:52 19:04:46 19:04:46 FA 19:29:15 FA 37.5 0.38

71 8/2/2017 2000Z 2030Z 38.299 38.415 ‐113.035 ‐113.183 17101 11097 DNE 20:03:33 20:08:26 20:08:26 FA 20:18:01 FA 41 0.57

72 8/3/2017 1930Z 2000Z 38.398 38.541 ‐113.112 ‐113.277 16847 10843 19 hours, 30 mins, 54.0 secs 19:09:40 19:09:40 19:09:40 Hit 21 19:43:06 Miss 28 3.38

73 8/3/2017 1950Z 2020Z 38.349 38.497 ‐112.601 ‐112.761 16847 10843 19 hours, 56 mins, 11.7 secs 19:19:28 19:19:28 19:19:28 Hit 37 19:29:15 Hit 27 32 2.06

74 8/5/2017 2140Z 2220Z 38.393 38.618 ‐113.074 ‐113.288 17349 11345 21 hours, 40 mins, 36.7 secs 21:36:35 21:41:28 21:41:28 Miss 21:46:08 Miss 35 3.5

75 8/6/2017 2050Z 2130Z 38.349 38.519 ‐113.194 ‐113.409 17026 11022 DNE 20:52:51 21:02:38 21:02:38 FA 21:07:32 FA 42.5 0.44

76 8/7/2017 1830Z 1900Z 39.898 40.062 ‐112.585 ‐112.75 KMTX 16166 15074 DNE 18:32:05 18:53:26 18:53:26 FA Never Met CR 30 0.56

77 8/7/2017 2240Z 2310Z 39.903 40.051 ‐112.772 ‐112.909 KMTX 16166 15074 DNE 22:41:24 22:45:50 22:45:50 FA 23:07:55 FA 38.5 0.41

78 8/11/2017 1910Z 1940Z 38.535 38.771 ‐112.936 ‐113.134 16023 10019 DNE 19:10:28 19:15:22 19:15:22 FA 19:20:15 FA 40 0.56

79 8/12/2017 1805Z 1835Z 38.512 38.706 ‐112.969 ‐113.178 16219 10215 DNE 18:03:46 18:13:33 18:13:33 FA 18:18:27 FA 43 0.75

80 8/12/2017 1805Z 1840Z 38.332 38.502 ‐113.26 ‐113.491 16219 10215 DNE 18:23:21 18:28:14 18:28:14 FA Never Met CR 36.5 0.66

81 8/16/2017 2240Z 2310Z 39.788 39.942 ‐112.502 ‐112.728 KMTX 15476 14384 DNE 22:56:56 Never Met Never Met CR Never Met CR 27 1.2

82 8/19/2017 2020Z 2050Z 39.722 39.892 ‐112.744 ‐112.931 KMTX 16379 15287 DNE 20:38:15 Never Met Never Met CR Never Met CR 26 1

83 8/21/2017 2120Z 2150Z 39.859 40.035 ‐112.272 ‐112.508 KMTX 16000 14908 DNE 21:14:18 21:21:45 21:21:45 FA 21:25:28 FA 41 0.5

84 8/22/2017 2020Z 2050Z 38.283 38.48 ‐112.755 ‐112.92 15961 9957 20 hours, 23 mins, 59.7 secs 20:11:13 20:20:07 20:20:07 Hit 4 Never Met Miss 39 3.38

85 8/22/2017 2320Z 2350Z 38.299 38.442 ‐112.975 ‐113.173 15961 9957 23 hours, 23 mins, 45.7 secs 23:20:05 23:27:38 23:27:38 Miss 23:38:57 Miss 32.5 1.81

86 8/31/2017 1950Z 2040Z 39.98 40.145 ‐112.321 ‐112.546 KMTX 16499 15407 DNE 20:13:07 Never Met Never Met CR Never Met CR 25 0.56

87 9/6/2017 2000Z 2035Z 38.376 38.486 ‐112.651 ‐112.826 16743 10739 20 hours, 0 min, 34.6 secs 19:58:03 20:02:58 20:02:58 Miss 20:12:49 Miss 36 2.5

88 9/7/2017 2250Z 2320Z 39.766 39.942 ‐112.755 ‐112.964 KMTX 16384 15292 22 hours, 52 mins, 8.4 secs 22:52:16 23:04:18 23:04:18 Miss 23:08:19 Miss 27 3.25

89 5/1/2018 1900Z 1930Z 38.227 38.422 ‐113.184 ‐113.335 13253 7249 DNE 19:10:58 Never Met Never Met CR Never Met CR 36 0.44

90 5/2/2018 1800Z 1830Z 38.463 38.633 ‐113.052 ‐113.233 13038 7034 DNE 18:19:55 Never Met Never Met CR Never Met CR 36 1.2

91 5/14/2018 1900Z 1945Z 38.348 38.584 ‐113.049 ‐113.236 15320 9316 DNE 19:15:56 19:27:12 19:27:12 FA Never Met CR 38 0.44

92 5/19/2018 1800Z 1845Z 38.265 38.496 ‐112.646 ‐112.898 16738 10734 DNE 17:58:07 18:02:46 18:02:46 FA 18:21:53 FA 55.5 0.56

93 5/22/2018 1845Z 1915Z 38.188 38.386 ‐112.783 ‐113.008 16285 10281 DNE 18:42:01 18:53:19 18:53:19 FA Never Met CR 36.5 1.21

94 5/27/2018 1800Z 1845Z 38.386 38.557 ‐113.102 ‐113.343 16471 10467 DNE 17:56:27 18:07:22 18:07:22 FA Never Met CR 36.5 0.31

95 5/27/2018 1840Z 1910Z 38.221 38.381 ‐113.178 ‐113.332 16471 10467 DNE 18:49:33 19:09:06 19:09:06 FA Never Met CR 36.5 0.55

96 5/28/2018 1745Z 1820Z 39.397 39.617 ‐112.948 ‐113.145 KMTX 16629 15537 17 hours, 45 mins, 4.5 secs 17:42:21 17:49:49 17:49:49 Miss Never Met Miss 31 2.13

97 7/9/2018 2125Z 2150Z 38.287 38.441 ‐113.189 ‐113.354 21691 15687 21 hours, 29 mins, 10.7 secs 21:27:03 21:33:12 21:33:12 Miss 21:38:55 Miss 36 3.25

98 7/9/2018 2130Z 2150Z 38.628 38.815 ‐112.69 ‐112.876 21691 15687 21 hours, 29 mins, 58.8 secs 21:27:03 21:44:53 21:44:53 Miss 21:57:10 Miss 35 1.31

99 7/13/2018 2010Z 2040Z 39.716 39.886 ‐112.799 ‐112.97 KMTX 22049 20957 DNE 20:26:21 20:33:49 20:33:49 FA Never Met CR 39.5 0.56

100 7/14/2018 2040Z 2115Z 38.199 38.364 ‐113.134 ‐113.316 22118 16114 DNE 20:39:23 20:50:07 20:50:07 FA Never Met CR 37.5 0.41

101 7/17/2018 1855Z 1930Z 38.452 38.573 ‐112.876 ‐113.151 21861 15857 DNE 19:08:09 19:18:54 19:18:54 FA Never Met CR 37 1.2

102 7/17/2018 1940Z 2020Z 38.392 38.507 ‐112.97 ‐113.2 21861 15857 19 hours, 39 mins, 46.1 secs 19:35:00 19:45:44 19:45:44 Miss 19:56:29 Miss 32 2.63

Travis Method Gremillion Method
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